Simplest way to solve this ?

enter image source here

4 Answers
Jan 28, 2018

I got p=+-6p=±6 as the possible values. Details follow...

Explanation:

According to the quadratic formula, the roots are:

x=(-p +- sqrt(p^2-4(2)(1)))/(2(2))=(-p+-sqrt(p^2-8))/4x=p±p24(2)(1)2(2)=p±p284

These roots are labelled alphaα and betaβ.

I will square both, add them and set the sum equal to 8:

((-p+sqrt(p^2-8))/4)^2 + ((-p-sqrt(p^2-8))/4)^2 = 8(p+p284)2+(pp284)2=8

Simpler to multiply both sides by 4^242 to remove the denominators:

(-p+sqrt(p^2-8))^2 + (-p-sqrt(p^2-8))^2 = 128(p+p28)2+(pp28)2=128

Using FOIL to expand the binomials:

p^2 - 2psqrt(p^2-8)+(p^2-8) + p^2 + 2psqrt(p^2-8)+(p^2-8)=128p22pp28+(p28)+p2+2pp28+(p28)=128

The two radicals on the left cancel (fortunately), leaving

2p^2 + 2(p^2-8)=1282p2+2(p28)=128

or

p^2+p^2-8=64p2+p28=64

2p^2 = 722p2=72

p^2 = 36p2=36

until, at last p=+-6p=±6

Jan 28, 2018

p=+-6p=±6

Explanation:

2x^2+px+1 = 2(x-alpha)(x-beta)2x2+px+1=2(xα)(xβ)

color(white)(2x^2+px+1) = 2x^2-2(alpha+beta)x+2alphabeta2x2+px+1=2x22(α+β)x+2αβ

So:

{ (alpha+beta=-p/2), (alphabeta=1/2) :}

Then:

8 = alpha^2+beta^2 = (alpha+beta)^2-2alphabeta = p^2/4-1

So:

p^2 = 4(8+1) = 36 = 6^2

So:

p = +-6

Jan 28, 2018

See below

Explanation:

2x^2 + px + 1 = 0

We know,

alpha + beta = -b/a

alpha + beta = -p/2

alpha * beta = c/a

alpha * beta = 1/2

alpha ^2 + beta ^2 = 8

(alpha + beta)^2 - 2alpha*beta = 8

Using the above values

(-p/2)^2 - 2*1/2 = 8

(-p/2)^2 - 1 = 8

(-p/2)^2 = 9

-p/2 = +-3

-p/2 = 3

-p = 6

p = -6

-p/2 = -3

-p = -6

p = 6

So, p = +-6

Jan 28, 2018

+-6.

Explanation:

alpha and beta are the roots of the qudr. eqn. 2x^2+px+1=0.

:. alpha+beta=-p/2.................(ast).

Also, alpha and beta must satisfy the quadr. eqn.

:. 2alpha^2+palpha+1=0, and, 2beta^2+pbeta+1=0.

Adding these, we get,

2(alpha^2+beta^2)+p(alpha+beta)+2=0.

(ast) and alpha^2+beta^2=8 rArr 2(8)+p(-p/2)+2=0, i.e.,

18=p^2/2, or, p^2=36," giving, "p=+-6.