Question #994ee

1 Answer
Jan 29, 2018

-sin[x-y]/[1-sin[x-y]]sin[xy]1sin[xy]

Explanation:

Using the chain rule and implicit differentiation,
dy/dx =-sin[x-y]d/dx[x-y]dydx=sin[xy]ddx[xy]

dy/dx=-sin[x-y][1-dy/dx]dydx=sin[xy][1dydx]

-dy/dx/[sin[x-y]+dy/dx=1dydx/[sin[xy]+dydx=1

-dy/dx[1/sin[x-y]-1]=1dydx[1sin[xy]1]=1

dy/dx=-1/[1/[sin[x-y]]+1]dydx=11sin[xy]+1

dy/dx=-1/[1-sin[x-y]]/[sin[x-y]]dydx=11sin[xy]/[sin[xy]]

dy/dx=-sin[x-y]/[1-sin[x-y]]dydx=sin[xy]1sin[xy]