Question #01a2a

1 Answer
Jan 30, 2018

12(cos(5θ)cos(9θ))

Explanation:

Using the sum and difference formulas for cosine we have:

cos(xy)=cos(x)cos(y)+sin(x)sin(y)
cos(x+y)=cos(x)cos(y)sin(x)sin(y)

If we subtract those formulas:

cos(xy)cos(x+y)=2sin(x)sin(y)

so

sin(x)sin(y)=12(cos(xy)cos(x+y))

so

sin(2θ)sin(7θ)=12(cos(2θ7θ)cos(2θ+7θ))

=12(cos(5θ)cos(9θ))

since cosine is even we can rewrite this as:

=12(cos(5θ)cos(9θ))