How do you use the chain rule to differentiate y=csc3(3x2)?

1 Answer
Jan 30, 2018

ddx(csc3(3x2))=92csc3(3x2)cot(3x2)

Explanation:

ddxf(g(x))n=nf(g(x))n1ddxf(g(x))ddxg(x)

ddxcsc(x)=csc(x)cot(x)

ddx3x2=32

Applying the first formula:

ddx(csc3(3x2))=3csc2(3x2)(csc(3x2)cot(3x2))32

Simplifying:

  • 332=92
  • csc2(3x2)(csc(3x2))=csc3(3x2)

We end with:

ddx(csc3(3x2))=92csc3(3x2)cot(3x2)

Hope that helped!