How do you simplify sqrt(10a) * sqrt(30a) ?

2 Answers
Jan 31, 2018

10asqrt(3)

Explanation:

sqrt(10a)*sqrt(30a)

Know that, sqrt(a)*sqrt(b)=sqrt(ab) for a, b>0

:.=sqrt(10a*30a)

=sqrt(300a^2)

=asqrt(300)

=asqrt(100*3)

=10asqrt(3)

Jan 31, 2018

sqrt(10a) * sqrt(30a) = 10sqrt(3)a

Explanation:

If a >= 0 and b is any number (positive, zero, negative or complex) then:

sqrt(ab) = sqrt(a)sqrt(b)

Moreover, if a is any number, then sqrt(a) is by definition a value satisfying:

(sqrt(a))^2 = a

So we find:

sqrt(10a) * sqrt(30a) = sqrt(10) * sqrt(a) * sqrt(30) * sqrt(a)

color(white)(sqrt(10a) * sqrt(30a)) = sqrt(10) * sqrt(a) * sqrt(10) * sqrt(3) * sqrt(a)

color(white)(sqrt(10a) * sqrt(30a)) = (sqrt(10))^2 * sqrt(3) * (sqrt(a))^2

color(white)(sqrt(10a) * sqrt(30a)) = 10sqrt(3)a