How do you evaluate (- 3x ^ { 3} y ^ { 4} z ^ { 2} ) ( x y z ^ { 2} ) ( - x ^ { 5} y ^ { 2} z )?

2 Answers
Jan 31, 2018

See a solution process below:

Explanation:

First, rearrange the expression as:

(-3x^3y^4z^2)(xyz^2)(-x^5y^2z) =>

(-3x^3y^4z^2)(xyz^2)(-1x^5y^2z) =>

(-3 * -1)(x^3 * x * x^5)(y^4 * y * y^2)(z^2 * z^2 * z) =>

3(x^3 * x * x^5)(y^4 * y * y^2)(z^2 * z^2 * z)

Next, use this rule for exponents to rewrite the expression:

a = a^color(red)(1)

3(x^3 * x^color(red)(1) * x^5)(y^4 * y^color(red)(1) * y^2)(z^2 * z^2 * z^color(red)(1))

Now, use this rule of exponents to complete the evaluation:

x^color(red)(a) xx x^color(blue)(b) = x^(color(red)(a) + color(blue)(b))

3(x^color(blue)(3) * x^color(red)(1) * x^color(green)(5))(y^color(blue)(4) * y^color(red)(1) * y^color(green)(2))(z^color(blue)(2) * z^color(green)(2) * z^color(red)(1)) =>

3x^(color(blue)(3)+color(red)(1)+color(green)(5))y^(color(blue)(4)+color(red)(1)+color(green)(2))z^(color(blue)(2)+color(green)(2)+color(red)(1)) =>

3x^9y^7z^5

Jan 31, 2018

3x^9y^7z^5

Explanation:

Take each different term and multiply them. Powers multiply by adding the exponents.
-3*-1=3
x^3*x^1*x^5=x^9
y^4*y^1*y^2=y^7
z^2*z^2*z^1=z^5