Calculate the amount of energy evolved (in kJ) when 2.50 mg of 2H undergoes fusion according to the equation below. 2H + 3H = 4He + 1n ?

Ive calculated the mass defect through guidance of a video. The video calculates the energy for one mole of 4He. How do i calculate the energy for 2H?

1 Answer
Feb 1, 2018

The energy change is for the 'overall' reaction, not just deuterium or tritium. For a 2.50 mg sample of Deuterium (H-2) Delta E ~ -4.22xx10^6j.

Explanation:

For the reaction ""_1^2H + ""_1^3H => ""_2^4He + ""_0^1n determine the nuclear masses ...

Nuclear mass of ""_1^2H = Mass of ""_1^2H - Mass of 1e^-
= 2.01400 amu - 0.000549 amu = 2.013451 amu

Nuclear mass of ""_1^3H = Mass of ""_1^3H - Mass of 1e^-
= 3.01605 amu - 0.000549 amu = 3.015501 amu

Nuclear mass of ""_2^4He = Mass of ""_2^4He - mass of 2e^-
= 4.00260 amu - 2(0.000549) amu = 4.001502 amu

Mass of 1 ""_1^on = 1.00865 amu

Change in nuclear mass
Delta m = Sigma(Product Masses) - Sigma(Reactant Masses)
= [4.001502"amu" + 1.008665"amu"] - [2.013451"amu" + 3.015501"amu"] = -0.018785 "amu"
= -1.8785xx10^-5Kg

Energy Change for one mole ""_1^2H ...
DeltaE = mc^2 = (-1.8785xx10^-5Kg)(3xx10^8"m/s")^2
= -1.68839xx10^12 Kgm^2/s^2 = -1.68839xx10^12"joules"

Energy Change for 2.50 mg ""_1^2H = 2.5xx10^-6 "mole"""_1^2H
= 2.5xx10^-6cancel("mole") (-1.68839xx10^12j/cancel("mole"))
= -4.22xx10^6j

Energy Change in MeV per nucleon ...
= ((-4.22xx10^6cancel(j))/(2.5xx10^-6cancel("mole")))((1cancel("mole"))/(6.023xx10^23"nuclei"))((1"MeV")/(1.602xx10^-13cancel(j)))
= -17.5"MeV"/"nuclei"