Question #a6fe2

2 Answers
Feb 6, 2018

#sin^4(x)+ cos^4(x) = 7/8#

Explanation:

We know that:

#sin^2(x)+cos^2(x) = 1#

Square both sides:

#(sin^2(x)+cos^2(x))^2 = 1^2#

Expand the squares and mark as equation [1]:

#sin^4(x)+ 2sin^2(x)cos^2(x)+cos^4(x) = 1" [1]"#

Given #sin(x)cos(x) = 1/4#

Square both sides:

#sin^2(x)cos^2(x) = 1/16#

Multiply both sides by 2:

#2sin^2(x)cos^2(x) = 2/16#

Simplify and mark as equation [2]:

#2sin^2(x)cos^2(x) = 1/8" [2]"#

Subtract equation [2] from equation [1]:

#sin^4(x)+ 2sin^2(x)cos^2(x)-2sin^2(x)cos^2(x)+cos^4(x) = 1-1/8#

Simplify:

#sin^4(x)+ cos^4(x) = 7/8#

Feb 6, 2018

#7/8#

Explanation:

Squaring both sides and using the trig identity: #sin^2x+cos^2x=1# we can write the expression in terms of #sin^2x#:

#sin^2xtimescos^2x=1/16#
#sin^2xtimes(1-sin^2x)=1/16#
#sin^2x-sin^4x-1/16=0#

Let #y=sin^2x#

#y^2-y+1/16=0#
#y=(-(-1)+-sqrt((-1)^2-4times1times1/16))/(2times1)#
#y=1/2+-1/2sqrt(3/4)#
#y=1/2+-sqrt3/4#

Substitute back:

#sin^2x=1/2+sqrt3/4vvsin^2x=1/2-sqrt3/4#

For each possible value of #sin^2x# we should have a value for the expression #sin^4x+cos^4x#.

#if sin^2x=1/2+sqrt3/4:#

  • #cos^2x=1-(1/2+sqrt3/4)=>cos^4x=(1/2-sqrt3/4)^2=7/16-sqrt3/4#
  • #sin^4x=(1/2+sqrt3/4)^2=7/16+sqrt3/4#

#sin^4x+cos^4x=7/16+sqrt3/4+7/16-sqrt3/4=7/8#

#if sin^2x=1/2-sqrt3/4:#

  • #cos^2x=1-(1/2-sqrt3/4)=>cos^4x=(1/2+sqrt3/4)^2=7/16+sqrt3/4#
  • #sin^4x=(1/2-sqrt3/4)^2=7/16-sqrt3/4#

#sin^4x+cos^4x=7/16-sqrt3/4+7/16+sqrt3/4=7/8#

In both cases, we get the same result, so we can conclude:

#sin^4x+cos^4x=7/8#