Question #a6fe2

2 Answers
Feb 6, 2018

sin^4(x)+ cos^4(x) = 7/8sin4(x)+cos4(x)=78

Explanation:

We know that:

sin^2(x)+cos^2(x) = 1sin2(x)+cos2(x)=1

Square both sides:

(sin^2(x)+cos^2(x))^2 = 1^2(sin2(x)+cos2(x))2=12

Expand the squares and mark as equation [1]:

sin^4(x)+ 2sin^2(x)cos^2(x)+cos^4(x) = 1" [1]"sin4(x)+2sin2(x)cos2(x)+cos4(x)=1 [1]

Given sin(x)cos(x) = 1/4sin(x)cos(x)=14

Square both sides:

sin^2(x)cos^2(x) = 1/16sin2(x)cos2(x)=116

Multiply both sides by 2:

2sin^2(x)cos^2(x) = 2/162sin2(x)cos2(x)=216

Simplify and mark as equation [2]:

2sin^2(x)cos^2(x) = 1/8" [2]"2sin2(x)cos2(x)=18 [2]

Subtract equation [2] from equation [1]:

sin^4(x)+ 2sin^2(x)cos^2(x)-2sin^2(x)cos^2(x)+cos^4(x) = 1-1/8sin4(x)+2sin2(x)cos2(x)2sin2(x)cos2(x)+cos4(x)=118

Simplify:

sin^4(x)+ cos^4(x) = 7/8sin4(x)+cos4(x)=78

Feb 6, 2018

7/878

Explanation:

Squaring both sides and using the trig identity: sin^2x+cos^2x=1sin2x+cos2x=1 we can write the expression in terms of sin^2xsin2x:

sin^2xtimescos^2x=1/16sin2x×cos2x=116
sin^2xtimes(1-sin^2x)=1/16sin2x×(1sin2x)=116
sin^2x-sin^4x-1/16=0sin2xsin4x116=0

Let y=sin^2xy=sin2x

y^2-y+1/16=0y2y+116=0
y=(-(-1)+-sqrt((-1)^2-4times1times1/16))/(2times1)y=(1)±(1)24×1×1162×1
y=1/2+-1/2sqrt(3/4)y=12±1234
y=1/2+-sqrt3/4y=12±34

Substitute back:

sin^2x=1/2+sqrt3/4vvsin^2x=1/2-sqrt3/4sin2x=12+34sin2x=1234

For each possible value of sin^2xsin2x we should have a value for the expression sin^4x+cos^4xsin4x+cos4x.

if sin^2x=1/2+sqrt3/4:

  • cos^2x=1-(1/2+sqrt3/4)=>cos^4x=(1/2-sqrt3/4)^2=7/16-sqrt3/4
  • sin^4x=(1/2+sqrt3/4)^2=7/16+sqrt3/4

sin^4x+cos^4x=7/16+sqrt3/4+7/16-sqrt3/4=7/8

if sin^2x=1/2-sqrt3/4:

  • cos^2x=1-(1/2-sqrt3/4)=>cos^4x=(1/2+sqrt3/4)^2=7/16+sqrt3/4
  • sin^4x=(1/2-sqrt3/4)^2=7/16-sqrt3/4

sin^4x+cos^4x=7/16-sqrt3/4+7/16+sqrt3/4=7/8

In both cases, we get the same result, so we can conclude:

sin^4x+cos^4x=7/8