How do you differentiate f(x)=sqrtcsc(2x -4) f(x)=csc(2x4) using the chain rule?

1 Answer
Feb 9, 2018

f'(x)=-cos(2x-4)csc(2x-4)^(3/2)

Explanation:

rewrite the function like this
csc(2x-4)^(1/2)

use chain rule by first using power rule on the 1/2 exponent,
then on the csc function, and finally on the function inside the csc

cancel(1/2)csc(2x-4)^(-1/2)*(-csc(2x-4)cot(2x-4))cancel(2)

then

csc(2x-4)^(-1/2)=1/sqrt(csc(2x-4))

multiply

(-csc(2x-4)cot(2x-4))/(sqrt(csc(2x-4))

convert everything into sin and cos
((-1/sin(2x-4))*(cos(2x-4)/sin(2x-4)))/csc(2x-4)^(1/2)

simplify

((-cos(2x-4))/(sin^2(2x-4)))/(1/sin(2x-4)^(1/2))

flip and multiply

(-cos(2x-4)sin(2x-4)^(1/2))/sin^2(2x-4)

subtract sin exponents

-cos(2x-4)*sin(2x-4)^(-3/2)

more simplification

-cos(2x-4)*(1/csc(2x-4)^(-3/2))

-cos(2x-4)csc(2x-4)^(3/2)