Question #7ec3c

2 Answers
Feb 13, 2018

pi/3; (5pi)/3

Explanation:

2cos^2 (t/2) - 3cos t = 0
Using identity (1 + cos 2a = 2 cos^2 a), replace in the equation
2cos^2 (t/2) by (1 + cos t).
We get:
1 + cos t - 3cos t = 0
cos t = 1/2
Trig Table and unit circle give 2 solutions:
t = +- pi/3, or
t = pi/3, and t = (5pi)/3 (co-terminal to (- pi/3))

Feb 13, 2018

Give a look here...

Reference proof:-

costheta=cos^2(theta/2)-sin^2(theta/2)
=>costheta=cos^2(theta/2)-1+cos^2(theta/2)
=>costheta=2cos^2(theta/2)-1

Explanation:

2cos^2(theta/2)-3costheta=0
=>(costheta+1)-3costheta=0
=>2costheta=1
=>costheta=1/2
=>costheta=cos(pi/3)
=>theta=2npi+-(pi/3)" "[n in I]

for" "color(red)(n=0->theta=pi/3
for" "color(red)(n=1->theta=(5pi)/3

Hope it helps...
Thnx...