Find y' ?? please help
2 Answers
y'=
Explanation:
implicitly with respect
Let
So ,
dy/dx = ( 24x^5e^2y -8x) / ( 1- 8x^6e^(2y) )
Explanation:
We have:
sqrt(4x^2+y) = 2x^3e^y
If we have a function
dy/dx = − F_x / F_y
So Let
Then:
F_x = (partial F)/(partial x)
\ \ \ \ = 1/2(4x^2+y)^(-1/2)(8x)-6x^2e^y
\ \ \ \ = (4x)/sqrt(4x^2+y)-6x^2e^y
And:
F_y = (partial F)/(partial y)
\ \ \ \ = 1/2(4x^2+y)^(-1/2)(1)-2x^3e^y
\ \ \ \ = 1/(2sqrt(4x^2+y))-2x^3e^y
And so we have:
dy/dx = − F_x / F_y
\ \ \ \ \ = − ((4x)/sqrt(4x^2+y)-6x^2e^y) / (1/(2sqrt(4x^2+y))-2x^3e^y)
Using the original definition:
sqrt(4x^2+y) = 2x^3e^y
We can simplify our expression:
dy/dx = − ((4x)/(2x^3e^y)-6x^2e^y) / (1/(2(2x^3e^y))-2x^3e^y)
\ \ \ \ \ = − ( ( 4x -6x^2e^y(2x^3e^y) ) / (2x^3e^y) ) / ( ( 1-2x^3e^y(2)(2x^3e^y) ) / ((2)(2x^3e^y) )
\ \ \ \ \ = −2 ( 4x -6x^2e^y(2x^3e^y) ) / ( 1-2x^3e^y(4x^3e^y) )
\ \ \ \ \ = ( 24x^5e^2y -8x) / ( 1- 8x^6e^(2y) )