How do I solve 1=2cos(3X-5pi) for (0,2pi)?

#1=2cos(3x-5pi)# for #(0,2pi]#

2 Answers
Feb 15, 2018

The values of x being #(16pi)/9 and (20pi)/9# form the valid solutions.

Explanation:

Given:
#1=2cos(3x-5pi)#
for #(0,2pi)#
Interchanging lhs and rhs
#2cos(3x-5pi)=1#

Dividing by 2
#cos(3x-5pi)=1/2#
We know that #cos(pi/6)=1/2# is the fundamental solution
Comparing
#cos(3x-5pi)=1/2#and #cos(pi/3)=1/2#
we have, #3x-5pi=pi/3,2pi-pi/3# for the range #(0,2pi)#

#3x-5pi=pi/3#
Adding #5pi#
#3x=5pi+pi/3=(31pi)/6#
Dividing by 3
#x=(1/3)(16pi)/3=(16pi)/9#

#3x-5pi=2pi-pi/3=(5pi)/3#
Adding #5pi#
#3x=5pi+(5pi)/3=(20pi)/3#
Dividing by 3
#x=(20pi)/9#

The values of x being #(16pi)/9 and (20pi)/9# form the valid solutions.

Feb 16, 2018

#(2pi)/9; (4pi)/9#

Explanation:

#2cos (3x - 5pi) = 2cos (3x - pi) = 1#
#cos (3x - pi) = 1/2#
Trig table and unit circle give 2 solutions:
#3x - pi = +- pi/3#
a. #3x - pi = pi/3# --> #3x = pi + pi/3 = (4pi)/3#
#x = (4pi)/9#
b. #3x - pi = - pi/3# --> #3x = pi - pi/3 = (2pi)/3#
#x = (2pi)/9#