How do I solve 1=2cos(3X-5pi) for (0,2pi)?

1=2cos(3x-5pi)1=2cos(3x5π) for (0,2pi](0,2π]

2 Answers
Feb 15, 2018

The values of x being (16pi)/9 and (20pi)/916π9and20π9 form the valid solutions.

Explanation:

Given:
1=2cos(3x-5pi)1=2cos(3x5π)
for (0,2pi)(0,2π)
Interchanging lhs and rhs
2cos(3x-5pi)=12cos(3x5π)=1

Dividing by 2
cos(3x-5pi)=1/2cos(3x5π)=12
We know that cos(pi/6)=1/2cos(π6)=12 is the fundamental solution
Comparing
cos(3x-5pi)=1/2cos(3x5π)=12and cos(pi/3)=1/2cos(π3)=12
we have, 3x-5pi=pi/3,2pi-pi/33x5π=π3,2ππ3 for the range (0,2pi)(0,2π)

3x-5pi=pi/33x5π=π3
Adding 5pi5π
3x=5pi+pi/3=(31pi)/63x=5π+π3=31π6
Dividing by 3
x=(1/3)(16pi)/3=(16pi)/9x=(13)16π3=16π9

3x-5pi=2pi-pi/3=(5pi)/33x5π=2ππ3=5π3
Adding 5pi5π
3x=5pi+(5pi)/3=(20pi)/33x=5π+5π3=20π3
Dividing by 3
x=(20pi)/9x=20π9

The values of x being (16pi)/9 and (20pi)/916π9and20π9 form the valid solutions.

Feb 16, 2018

(2pi)/9; (4pi)/92π9;4π9

Explanation:

2cos (3x - 5pi) = 2cos (3x - pi) = 12cos(3x5π)=2cos(3xπ)=1
cos (3x - pi) = 1/2cos(3xπ)=12
Trig table and unit circle give 2 solutions:
3x - pi = +- pi/33xπ=±π3
a. 3x - pi = pi/33xπ=π3 --> 3x = pi + pi/3 = (4pi)/33x=π+π3=4π3
x = (4pi)/9x=4π9
b. 3x - pi = - pi/33xπ=π3 --> 3x = pi - pi/3 = (2pi)/33x=ππ3=2π3
x = (2pi)/9x=2π9