\
"This can be made easier by rewriting the function first,"
"to prepare it for differentiation."
"We are given: "
\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad y \ = \ 3 x^{ -4 } - 1 / { x^2 }.
\qquad \qquad \qquad \qquad :. \qquad \qquad \qquad \quad y \ = \ 3 x^{ -4 } - x^{ -2 }.
"Now differentiate, using the Power Rule: "
\qquad \qquad \qquad \qquad \qquad \qquad y' \ = \ 3 ( -4 x^{ -5 } ) - ( -2 x^{ -3 } ).
"Now simplify, and then eliminate negative exponents: "
\qquad \qquad \qquad \qquad \qquad \qquad \qquad y' \ = \ -12 x^{ -5 } + 2 x^{ -3 }
\qquad \qquad \qquad \qquad \qquad \qquad \qquad y' \ = \ -12 / x^5 + 2 / x^3.
"This is our answer !!"
\
"So, summarizing:"
\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad y \ = \ 3 x^{ -4 } - 1 / { x^2 } \quad.
\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad y' \ = \ -12 / x^5 + 2 / x^3 \quad.