Find derivative for y=3x^-4 -1/x^2?

1 Answer
Feb 16, 2018

# \ #

# \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad y' \ = \ -12 / x^5 + 2 / x^3 \quad. #

Explanation:

# \ #

# "This can be made easier by rewriting the function first," #
# "to prepare it for differentiation." #

# "We are given: " #

# \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad y \ = \ 3 x^{ -4 } - 1 / { x^2 }. #

# \qquad \qquad \qquad \qquad :. \qquad \qquad \qquad \quad y \ = \ 3 x^{ -4 } - x^{ -2 }. #

# "Now differentiate, using the Power Rule: " #

# \qquad \qquad \qquad \qquad \qquad \qquad y' \ = \ 3 ( -4 x^{ -5 } ) - ( -2 x^{ -3 } ). #

# "Now simplify, and then eliminate negative exponents: " #

# \qquad \qquad \qquad \qquad \qquad \qquad \qquad y' \ = \ -12 x^{ -5 } + 2 x^{ -3 } #

# \qquad \qquad \qquad \qquad \qquad \qquad \qquad y' \ = \ -12 / x^5 + 2 / x^3. #

# "This is our answer !!" #

# \ #

# "So, summarizing:" #

# \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad y \ = \ 3 x^{ -4 } - 1 / { x^2 } \quad. #

# \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad y' \ = \ -12 / x^5 + 2 / x^3 \quad. #