Find derivative for y=3x^-4 -1/x^2?

1 Answer
Feb 16, 2018

\

\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad y' \ = \ -12 / x^5 + 2 / x^3 \quad.

Explanation:

\

"This can be made easier by rewriting the function first,"
"to prepare it for differentiation."

"We are given: "

\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad y \ = \ 3 x^{ -4 } - 1 / { x^2 }.

\qquad \qquad \qquad \qquad :. \qquad \qquad \qquad \quad y \ = \ 3 x^{ -4 } - x^{ -2 }.

"Now differentiate, using the Power Rule: "

\qquad \qquad \qquad \qquad \qquad \qquad y' \ = \ 3 ( -4 x^{ -5 } ) - ( -2 x^{ -3 } ).

"Now simplify, and then eliminate negative exponents: "

\qquad \qquad \qquad \qquad \qquad \qquad \qquad y' \ = \ -12 x^{ -5 } + 2 x^{ -3 }

\qquad \qquad \qquad \qquad \qquad \qquad \qquad y' \ = \ -12 / x^5 + 2 / x^3.

"This is our answer !!"

\

"So, summarizing:"

\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad y \ = \ 3 x^{ -4 } - 1 / { x^2 } \quad.

\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad y' \ = \ -12 / x^5 + 2 / x^3 \quad.