# \ #
# "This can be made easier by rewriting the function first," #
# "to prepare it for differentiation." #
# "We are given: " #
# \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad y \ = \ 3 x^{ -4 } - 1 / { x^2 }. #
# \qquad \qquad \qquad \qquad :. \qquad \qquad \qquad \quad y \ = \ 3 x^{ -4 } - x^{ -2 }. #
# "Now differentiate, using the Power Rule: " #
# \qquad \qquad \qquad \qquad \qquad \qquad y' \ = \ 3 ( -4 x^{ -5 } ) - ( -2 x^{ -3 } ). #
# "Now simplify, and then eliminate negative exponents: " #
# \qquad \qquad \qquad \qquad \qquad \qquad \qquad y' \ = \ -12 x^{ -5 } + 2 x^{ -3 } #
# \qquad \qquad \qquad \qquad \qquad \qquad \qquad y' \ = \ -12 / x^5 + 2 / x^3. #
# "This is our answer !!" #
# \ #
# "So, summarizing:" #
# \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad y \ = \ 3 x^{ -4 } - 1 / { x^2 } \quad. #
# \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad y' \ = \ -12 / x^5 + 2 / x^3 \quad. #