Which of following statements are true or false?Give reasons for your answers.(i)The function f, defined by f(x)=x^3-6x^2+16x-15,is increasing in RR.

2 Answers
Feb 16, 2018

# \ #

# "See proof below." #

Explanation:

# \ #

# "To answer this, we will look at" \ \ f'(x). #

# "Given:" \qquad \qquad \qquad \qquad \qquad \quad \ f(x) \ = \ x^3 - 6 x^2 + 16 x - 15. #

# "Differentiate:" \qquad \qquad \quad f'(x) \ = \ 3 x^2 - 12 x + 16. #

# "We want to know whether or not" \ f'(x) \ \ "is always positive." #

# "There are several ways to continue here. Because the function" #
# "is a quadratic polynomial with simple coefficients, it might be" #
# "easiest just to complete the square here:" #

# \qquad \qquad \qquad \qquad \qquad \qquad \quad f'(x) \ = \ 3 x^2 - 12 x + 16 #

# \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad = \ 3 ( x^2 - 4 x ) + 16 #

# \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad = \ 3 ( x^2 - 4 x + 4 - 4 ) + 16 #

# \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad = \ 3 ( ( x - 2 )^2 - 4 ) + 16 #

# \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad = \ 3 ( x - 2 )^2 - 12 + 16 #

# \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad = \ 3 ( x - 2 )^2 + 4. #

# "So:" #

# \qquad \qquad \qquad \qquad \qquad \qquad \quad f'(x) \ = \ 3 ( x - 2 )^2 + 4. #

# "The expression on the RHS of the previous is clearly positive" #
# "everywhere. Here's a proof, if desired:" #

# \qquad x \in RR \quad => \quad #

# ( x - 2 )^2 >= 0, "as square of any quantity is always non-negative;" #

# \qquad \qquad \qquad :. \qquad \qquad \quad \quad 3 \cdot ( x - 2 )^2 >= 3 \cdot 0, \qquad \qquad \qquad \quad "as 3 is positive;" #

# \qquad \qquad \qquad :. \qquad \qquad \qquad \quad \ 3 ( x - 2 )^2 >= 0, #

# \qquad \qquad \qquad :. \qquad \qquad \qquad \quad \ 3 ( x - 2 )^2 + 4 >= 0 + 4, #

# \qquad \qquad \qquad :. \qquad \qquad \qquad \quad \ 3 ( x - 2 )^2 + 4 >= 4, #

# \qquad \qquad \qquad :. \qquad \qquad \qquad \quad \ 3 ( x - 2 )^2 + 4 > 0. #

# "Thus:" #

# \qquad \qquad \qquad \qquad \qquad \qquad x \in RR \quad => \quad \ 3 ( x - 2 )^2 + 4 > 0. #

# \qquad :. \qquad \qquad \ 3 ( x - 2 )^2 + 4 \quad \ "is positive everywhere." #

# \qquad :. \qquad \qquad \qquad \qquad f'(x) \quad \ "is positive everywhere." #

# \qquad \qquad :. \qquad \qquad \quad f(x) \qquad \ "is increasing everywhere." #

# \ #

# "I.e.:" \qquad \qquad \qquad \qquad \quad f(x) \ \ "is increasing on" \ \ RR." \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad \ square #

Feb 16, 2018

The statement is true

Explanation:

The first derivative is given by

#f'(x) = 3x^2 - 12x + 16#

Critical points will occur when #f'(x) =0#.

#0 = 3x^2 -12x + 16#

By the discriminant we get that

#b^2 -4ac = (-12)^2 - 4(3)(16) = -48#

Since this is negative there will be no solution to the equation. Thus, the function will either be increasing or decreasing for all #x#.

If you test a point, like #x =0# into the derivative, you see it will be positive. Thus the function is increasing on all #x#. Therefore, the statement is true.

Hopefully this helps!