Which of following statements are true or false?Give reasons for your answers.(i)The function f, defined by f(x)=x^3-6x^2+16x-15,is increasing in RR.

2 Answers
Feb 16, 2018

\

"See proof below." See proof below.

Explanation:

\

"To answer this, we will look at" \ \ f'(x).

"Given:" \qquad \qquad \qquad \qquad \qquad \quad \ f(x) \ = \ x^3 - 6 x^2 + 16 x - 15.

"Differentiate:" \qquad \qquad \quad f'(x) \ = \ 3 x^2 - 12 x + 16.

"We want to know whether or not" \ f'(x) \ \ "is always positive."

"There are several ways to continue here. Because the function"
"is a quadratic polynomial with simple coefficients, it might be"
"easiest just to complete the square here:"

\qquad \qquad \qquad \qquad \qquad \qquad \quad f'(x) \ = \ 3 x^2 - 12 x + 16

\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad = \ 3 ( x^2 - 4 x ) + 16

\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad = \ 3 ( x^2 - 4 x + 4 - 4 ) + 16

\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad = \ 3 ( ( x - 2 )^2 - 4 ) + 16

\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad = \ 3 ( x - 2 )^2 - 12 + 16

\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad = \ 3 ( x - 2 )^2 + 4.

"So:"

\qquad \qquad \qquad \qquad \qquad \qquad \quad f'(x) \ = \ 3 ( x - 2 )^2 + 4.

"The expression on the RHS of the previous is clearly positive"
"everywhere. Here's a proof, if desired:"

\qquad x \in RR \quad => \quad

( x - 2 )^2 >= 0, "as square of any quantity is always non-negative;"

\qquad \qquad \qquad :. \qquad \qquad \quad \quad 3 \cdot ( x - 2 )^2 >= 3 \cdot 0, \qquad \qquad \qquad \quad "as 3 is positive;"

\qquad \qquad \qquad :. \qquad \qquad \qquad \quad \ 3 ( x - 2 )^2 >= 0,

\qquad \qquad \qquad :. \qquad \qquad \qquad \quad \ 3 ( x - 2 )^2 + 4 >= 0 + 4,

\qquad \qquad \qquad :. \qquad \qquad \qquad \quad \ 3 ( x - 2 )^2 + 4 >= 4,

\qquad \qquad \qquad :. \qquad \qquad \qquad \quad \ 3 ( x - 2 )^2 + 4 > 0.

"Thus:"

\qquad \qquad \qquad \qquad \qquad \qquad x \in RR \quad => \quad \ 3 ( x - 2 )^2 + 4 > 0.

\qquad :. \qquad \qquad \ 3 ( x - 2 )^2 + 4 \quad \ "is positive everywhere."

\qquad :. \qquad \qquad \qquad \qquad f'(x) \quad \ "is positive everywhere."

\qquad \qquad :. \qquad \qquad \quad f(x) \qquad \ "is increasing everywhere."

\

"I.e.:" \qquad \qquad \qquad \qquad \quad f(x) \ \ "is increasing on" \ \ RR." \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad \ square

Feb 16, 2018

The statement is true

Explanation:

The first derivative is given by

f'(x) = 3x^2 - 12x + 16

Critical points will occur when f'(x) =0.

0 = 3x^2 -12x + 16

By the discriminant we get that

b^2 -4ac = (-12)^2 - 4(3)(16) = -48

Since this is negative there will be no solution to the equation. Thus, the function will either be increasing or decreasing for all x.

If you test a point, like x =0 into the derivative, you see it will be positive. Thus the function is increasing on all x. Therefore, the statement is true.

Hopefully this helps!