Cos(^ ( 2) \theta )+ sin(^ ( 2) \theta )= sec(\theta cos(\theta)) ?

1 Answer
Feb 17, 2018

# \qquad \qquad \qquad "The statement is True; it is a trig identity." #

Explanation:

# "We are asked to see if the following is true:" #

# \qquad \qquad \qquad \qquad cos^2(\theta) \ + \ sin^2(\theta) \ = \ sec(\theta) cos(\theta). \qquad \qquad \qquad \qquad \qquad \qquad \ \ (1) #

# "We can look at each side of this statement separately." #

# "LHS of (1):" \qquad \qquad \qquad cos^2(\theta) \ + \ sin^2(\theta) \ = \ 1; #

# \qquad \qquad \qquad \qquad \qquad "by Fundamental Pythagorean Identity." #

# "RHS of (1):" \qquad \quad sec(\theta) cos(\theta) \ = \ 1/cos(\theta) cos(\theta) \ = \ 1; #

# \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad "by Reciprocal Identities." #

# "So we conclude:" #

# \qquad \qquad \qquad \qquad \qquad \qquad \qquad "LHS of (1)" \ = \ "RHS of (1)." #

# "Thus our statement in (1) is true, it is a trig identity:" #

# \qquad \quad "True:" \qquad \quad \quad cos^2(\theta) \ + \ sin^2(\theta) \ = \ sec(\theta) cos(\theta). #