Cos(^ ( 2) \theta )+ sin(^ ( 2) \theta )= sec(\theta cos(\theta)) ?

1 Answer
Feb 17, 2018

\qquad \qquad \qquad "The statement is True; it is a trig identity."

Explanation:

"We are asked to see if the following is true:"

\qquad \qquad \qquad \qquad cos^2(\theta) \ + \ sin^2(\theta) \ = \ sec(\theta) cos(\theta). \qquad \qquad \qquad \qquad \qquad \qquad \ \ (1)

"We can look at each side of this statement separately."

"LHS of (1):" \qquad \qquad \qquad cos^2(\theta) \ + \ sin^2(\theta) \ = \ 1;

\qquad \qquad \qquad \qquad \qquad "by Fundamental Pythagorean Identity."

"RHS of (1):" \qquad \quad sec(\theta) cos(\theta) \ = \ 1/cos(\theta) cos(\theta) \ = \ 1;

\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad "by Reciprocal Identities."

"So we conclude:"

\qquad \qquad \qquad \qquad \qquad \qquad \qquad "LHS of (1)" \ = \ "RHS of (1)."

"Thus our statement in (1) is true, it is a trig identity:"

\qquad \quad "True:" \qquad \quad \quad cos^2(\theta) \ + \ sin^2(\theta) \ = \ sec(\theta) cos(\theta).