Solve x.dydxy=2x2y?

1 Answer
Feb 18, 2018

y=xe[x2+c]

Explanation:

xdydx=2x2y+y, separating the variables.....

1ydydx=[2x2+1x] so dyy=2x2dx+dxx, integrating...
1ydy=2x2dx+1xdx, we have lny=x2+lnx+C

Which gives ln[yx]=x2+C.

eln[yx]=e[x2+c] [ theory of logs]

i.e, yx=e[x2+c] and so,y=xe[x2+c]]