What is the constant m, if y = e^(mx) satisfies (d^2y)/(dx^2) - 5dy/dx + 6y = 0 ?

3 Answers
Feb 18, 2018

m = 2 or m= 3

Explanation:

Given: y = e^(mx)

dy/dx = me^(mx)

(d^2y)/(dx^2) = m^2e^(mx)

Substituting into the equation (d^2y)/(dx^2) - 5dy/dx + 6y = 0:

m^2e^(mx) - 5me^(mx) + 6e^(mx) = 0

Dividing both sides by e^(mx)

m^2 - 5m + 6 = 0

Factor:

(m -2)(m-3)=0

m = 2 or m= 3

Feb 18, 2018

m=3, m=2

Explanation:

y=e^(mx)

dy/dx=me^(mx)

(d^2y)/(dx^2)=m^2e^(mx)

"Differential equation is"

(d^2y)/(dx^2)-5(dy)/dx+6y=0

"Substituting"

m^2e^(mx)-5me^(mx)+6e^(mx)=0

(m^2-5m+6)e^(mx)=0

m^2-5m+6=0

m^2-2m-3m+6=0

m(m-3)-2(m-3)=0

(m-3)(m-2)=0

m-3=0, or m-2=0

m=3, m=2

Feb 18, 2018

m=3 or 2

Explanation:

(dy)/dx=me^(mx)

(d^2y)/dx^2=m^2e^(mx)

Substituting is equation,

(d^2y)/dx^2 -5(dy)/dx +6y=0

m^2e^(mx) -5me^(mx)+6e^(mx)=0

Dividing both sides by e^(mx),

m^2-5m+6=0

(m-3)(m-2)=0

m=3,2