Find ∂w/∂u?

Let
w = x^2 + y^2 + z^2,
x = uv, y = u cos(v), z = u sin(v).
Use the chain rule to find ∂w/∂u when (u, v) = (9, 0).

1 Answer
Feb 19, 2018

w = x^2 + y^2 + z^2w=x2+y2+z2

w=(uv)^2 + (ucosv)^2 + (usinv)^2w=(uv)2+(ucosv)2+(usinv)2

color(white)(d)d

=>(dw)/(du) = 2uv * (u'v+uv') + 2(ucosv)* (u'cosv+ucosv') +2(usinv)* (u'sinv+usinv')

color(white)(d)

=>(dw)/(du) = 2uv * (v+u(dv)/(du)) + 2(ucosv)* (cosv-usinv(dv)/(du)) +2(usinv)* (sinv+ucosv(dv)/(du))

color(white)(d)

=>(dw)/(du) = 2uv^2+ 2u^2(dv)/(du)+ 2ucos^2v-2u^2cosvsinv(dv)/(du) +2usin^2v+2u^2sinvcosv(dv)/(du)

color(white)(d)

=>(dw)/(du) = 2uv^2+ 2u^2(dv)/(du)+ 2u(cos^2v+sin^2v)

color(white)(d)

=>(dw)/(du) = 2uv^2+ 2u^2(dv)/(du)+ 2u