4x^16y^16z^3-4x^16z^3-4y^16z^3+4z^3
let x^16 = a
let y^16 = b
let z^3 =c
So given expression = 4abc - 4ac - 4bc + 4c
=> 4ac ( b - 1) -4 c ( b-1) ----(group first two and last two terms and take the common factor outside the bracket)
=> (4ac -4c) (b-1)
=> 4c(a-1)(b-1)
Now substitute the original values of a,b, and c:
=> 4 z^3 (x^16 -1) (y^16 -1)
Use identity: a^2-b^2 = (a-b)(a+b)
=> 4 z^3 [(x^8)^2 - 1^2)(y^8)^2 -1^2)]
=> 4 z^3 [(x^8 - 1)(x^8 +1)] [(y^8 -1)(y^8 +1)]
=> 4 z^3 [(x^8 +1)(y^8 +1)] [(x^8 - 1)(y^8 -1)]
=> 4z^3 (x^8+1)(y^8+1) [(x^4)^2 -(1)^2)((y^4)^2 -(1)^2)]
=> 4z^3 (x^8+1)(y^8+1) [(x^4+1)(x^4-1)(y^4+1)(y^4-1)]
=> 4z^3 (x^8+1)(y^8+1)(x^4+1)(y^4+1)[(x^4-1)(y^4-1)]
=> 4z^3 (x^8+1)(y^8+1)(x^4+1)(y^4+1)[(x^2)^2-1^2)(y^2)^2-1^2)]
=> 4z^3 (x^8+1)(y^8+1)(x^4+1)(y^4+1)[(x^2+1)(x^2-1)(y^2+1)(y^2-1)]
=> 4z^3 (x^8+1)(y^8+1)(x^4+1)(y^4+1)(x^2+1)(y^2+1)[(x^2-1)(y^2-1)]
=> 4z^3 (x^8+1)(y^8+1)(x^4+1)(y^4+1)(x^2+1)(y^2+1)[(x-1)(x+1)(y-1)(y+1)]
=>4z^3(x^8+1)(x^4+1)(x^2+1)(x+1)(x-1)(y^8+1)(y^4+1)(y^2+1)(y+1)(y-1)