Factor completely?

4x^16y^16z^3-4x^16z^3-4y^16z^3+4z^3

2 Answers
Feb 20, 2018

=>4z^3(x^8+1)(x^4+1)(x^2+1)(x+1)(x-1)(y^8+1)(y^4+1)(y^2+1)(y+1)(y-1)

Explanation:

4x^16y^16z^3-4x^16z^3-4y^16z^3+4z^3

let x^16 = a

let y^16 = b

let z^3 =c

So given expression = 4abc - 4ac - 4bc + 4c

=> 4ac ( b - 1) -4 c ( b-1) ----(group first two and last two terms and take the common factor outside the bracket)

=> (4ac -4c) (b-1)

=> 4c(a-1)(b-1)

Now substitute the original values of a,b, and c:

=> 4 z^3 (x^16 -1) (y^16 -1)

Use identity: a^2-b^2 = (a-b)(a+b)

=> 4 z^3 [(x^8)^2 - 1^2)(y^8)^2 -1^2)]

=> 4 z^3 [(x^8 - 1)(x^8 +1)] [(y^8 -1)(y^8 +1)]

=> 4 z^3 [(x^8 +1)(y^8 +1)] [(x^8 - 1)(y^8 -1)]

=> 4z^3 (x^8+1)(y^8+1) [(x^4)^2 -(1)^2)((y^4)^2 -(1)^2)]

=> 4z^3 (x^8+1)(y^8+1) [(x^4+1)(x^4-1)(y^4+1)(y^4-1)]

=> 4z^3 (x^8+1)(y^8+1)(x^4+1)(y^4+1)[(x^4-1)(y^4-1)]

=> 4z^3 (x^8+1)(y^8+1)(x^4+1)(y^4+1)[(x^2)^2-1^2)(y^2)^2-1^2)]

=> 4z^3 (x^8+1)(y^8+1)(x^4+1)(y^4+1)[(x^2+1)(x^2-1)(y^2+1)(y^2-1)]

=> 4z^3 (x^8+1)(y^8+1)(x^4+1)(y^4+1)(x^2+1)(y^2+1)[(x^2-1)(y^2-1)]

=> 4z^3 (x^8+1)(y^8+1)(x^4+1)(y^4+1)(x^2+1)(y^2+1)[(x-1)(x+1)(y-1)(y+1)]

=>4z^3(x^8+1)(x^4+1)(x^2+1)(x+1)(x-1)(y^8+1)(y^4+1)(y^2+1)(y+1)(y-1)

Feb 20, 2018

4z^3(x^8+1)(x^4+1)(x^2+1)(x+1)(x-1)(y^8+1)(y^4+1)(y^2+1)(y+1)(y-1).

Explanation:

color(red)(4)x^16y^16color(red)(z^3)-color(red)(4)x^16color(red)(z^3)-color(red)(4)y^16color(red)(z^3)+color(red)(4z^3),

=color(red)(4z^3)(x^16y^16-x^16-y^16+1),

=4z^3{x^16(y^16-1)-1(y^16-1)},

=4z^3{(y^16-1)(x^16-1)},

=4z^3[{(y^8)^2-1^2}{(x^8)^2-1^2},

=4z^3{(y^8+1)(y^8-1)}{(x^8+1)(x^8-1)},

=4z^3(x^8+1)(y^8+1){(x^4)^2-1^2}{(y^4)^2-1^2},

=4z^3(x^8+1)(y^8+1){(x^4+1)(x^4-1)}{(y^4+1)(y^4-1)},

=4z^3(x^8+1)(y^8+1)(x^4+1)(y^4+1){(x^2)^2-1^2}{(y^2)^2-1^2},

=4z^3(x^8+1)(y^8+1)(x^4+1)(y^4+1){(x^2+1)(x^2-1)}{(y^2+1)(y^2-1)},

=4z^3(x^8+1)(y^8+1)(x^4+1)(y^4+1)(x^2+1)(y^2+1){(x+1)(x-1)}{(y+1)(y-1)},

=4z^3(x^8+1)(x^4+1)(x^2+1)(x+1)(x-1)(y^8+1)(y^4+1)(y^2+1)(y+1)(y-1).