How do i get component wihout x ? Thank you.

enter image source here
I know the n-k+1 and k-1 thingy.. but i have no idea if i should do something with it if there is 1/x and 1/2x.
Thank you.

2 Answers
Feb 21, 2018

"the term in the expansion of" \ \ ( 1/2 x - 1/x )^4 \ "without" \ x \ \ "is:" \quad \ \ 3/2 \ .

Explanation:

"One way to do this is to refer to the Binomial Theorem. "

"Recall the Binomial Theorem gives:"

\qquad \qquad \qquad \qquad \qquad \qquad ( a + b )^n \ = \ sum_{k=0}^{n} C(n, k) a^{n-k} b^k . \qquad \qquad \qquad \qquad \qquad \quad \ (1)

"In our case:" \qquad \qquad n=4, \qquad \qquad a =1/2 x, \qquad \qquad b = - 1/x. \

"So, substituting these into eqn. (1), we get:"

( 1/2 x - 1/x )^4 \ = \ sum_{k=0}^{4} C(4, k) ( 1/2 x )^{ 4-k } ( - 1/x )^k . \qquad \qquad \qquad (2)

"We want the term without" \ x. \ "Let's look carefully at the" \ \ k^{ mbox{th} } \ \
"term in the expansion in eqn. (2):"

\qquad \qquad \qquad \ k^{ mbox{th} } \ \ "term" \ \ = \ C(4, k) ( 1/2 x )^{ 4-k } ( -1/x)^k

\qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad = \ C(4, k) ( 1/2 )^{ 4-k } x^{4-k} (-1)^k ( 1/x )^{ k }

\qquad \qquad \qquad \qquad \qquad \qquad \qquad \ \ = \ C(4, k) (-1)^k ( 1/2 )^{ 4-k } x^{ 4-k } x^{ -k }

\qquad \qquad \qquad \qquad \qquad \qquad \qquad \ \ = \ C(4, k) (-1)^k ( 1/2 )^{ 4-k } x^{ 4-k -k }

\qquad \qquad \qquad \qquad \qquad \qquad \qquad \ \ = \ C(4, k) (-1)^k ( 1/2 )^{ 4-k } x^{ 4-2k }.

"So, we have:"

\qquad \qquad \qquad \quad \ \ k^{ mbox{th} } \ \ "term" \ = \ C(4, k) (-1)^k ( 1/2 )^{ 4-k } x^{ 4-2k }. \qquad \qquad \qquad (3)

"We want the term without" \ \ x \ \ "in it. The idea here is to note"
"that this can also be thought of as the term where" \ \ x \ \ "has"
"exponent 0. Using eqn. (3), we see that the" \ \ k^{ mbox{th} } \ \ "term has" \ \ x
"with exponent:" \quad 4-2k. "So the term with zero exponent for" \ \ x \ "occurs where:" \ \ 4-2k = 0. "So to find that term, we must solve"
"that equation:"

\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad 4-2k = 0.

\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad \ 2k = 4.

\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad \ \ k = 2.

"So, we conclude:"

\qquad \qquad "the second term in the expansion in eqn. (2) is the term"
\qquad \qquad \qquad \qquad "without" \ \ x.

"Now we calculate that term, using eqn. (3):"

\quad 2^{ mbox{nd} } \ "term in expansion in eqn. (2)"

\qquad \qquad \qquad \qquad \qquad \qquad \ = \ C(4, 2) (-1)^2 ( 1/2 )^{ 4-2} x^{ 4-2}

\qquad \qquad \qquad \qquad \qquad \qquad \ = \ { 4! } / { 2! 2! } cdot 1 cdot( 1/2 )^{ 2} x^{ 0}

\qquad \qquad \qquad \qquad \qquad \qquad \ = \ { 4 cdot 3 } / { 1 cdot 2 } cdot 1/2^{ 2} cdot 1

\qquad \qquad \qquad \qquad \qquad \qquad \ = \ { color{red}cancel{ 4 } cdot 3 } / { 1 cdot 2 } cdot 1/ color{red}cancel{ 2^{ 2} )

\qquad \qquad \qquad \qquad \qquad \qquad \ = \ { 3 } / { 1 cdot 2 }

\qquad \qquad \qquad \qquad \qquad \qquad \ = \ { 3 } / { 2 } \quad.

"This is our answer."

"Summarizing:"

"the term in the expansion of" \ \ ( 1/2 x - 1/x )^4 \ "without" \ x \ \ "is:" \quad \ \ 3/2 \ .

Feb 21, 2018

Alternate solution
Since power of the expression is 4, this can be used.

Explanation:

Given expression ( 1/2 x - 1/x )^4
Rewriting it as

[( x/2 - 1/x )^2]^2
=> ( bar(x^2/4 -1)+ 1/x^2 )^2
=> ( x^2/4 -1)^2+2( x^2/4 -1) 1/x^2+1/x^4
=> x^4/16 -x^2/2+1+ 1/2 -2/x^2+1/x^4
=> x^4/16 -x^2/2+3/2 -2/x^2+1/x^4

We see that term without x is 3/2