I need help on this question as I've been stuck on it for quite a while.! also the range is in radians from 0 TO PI. solve for x? thank you!!

#tan^2(2x-pi/6)=11-sec(2x-pi/6)#

2 Answers
Feb 21, 2018

See below.

Explanation:

For simplicity.

Let #x=(2x-pi/6)#

#tan^2x=11-secx#

#tan^2x+secx=11#

Using identities:

#color(red)bb(tanx=sinx/cosx)#

#color(red)(bb(secx=1/cosx)#

#sin^2x/cos^2x+1/cosx=11#

Add fractions:

#(sin^2x+cosx)/cos^2x=11#

#sin^2x+cosx=11cos^2x#

Identity:

#color(red)bb(sin^2x+cos^2=1)#

#1-cos^2x+cosx=11cos^2x#

Rearrange:

#-12cos^2x+cosx+1=0#

Multiply by #-1#

#12cos^2x-cosx-1=0#

Let #u=cosx#

#12u^2-u-1#

Factor:

#(4u+1)(3u-1)=0=>u=-1/4 and u=1/3#

#u=cosx=>cosx= -1/4 and 1/3#

#x=(2x-pi/6)=cos(2x-pi/6)=-1/4 and 1/3#

#2x-pi/6=arccos(cos(2x-pi/6))=arccos(-1/4)#

#2x-pi/6=arccos(-1/4)#

#x=(arccos(-1/4)+pi/6)/2~~1.17354# radians 5 .d.p.

#x=(-arccos(-1/4)+pi/6)/2+pi~~2.49165# radians 5 .d.p.

#2x-pi/6=arccos(cos(2x-pi/6))=arccos(1/3)#

#2x-pi/6=arccos(1/3)#

#x=(arccos(1/3)+pi/6)/2~~0.87728# radians 5 .d.p.

#x=(-arccos(1/3)+pi/6)/2+pi~~2.78791# radians 5 .d.p.

Feb 21, 2018

#x = pi/12 - 1/2 cos^-1 (1/3) + pi approx 2.788#
#x = pi/12 + 1/2 cos^-1 (1/3)approx 0.877#
#x = pi/12 - 1/2 cos^-1 (-1/4) + pi approx 2.492#
#x = pi/12 + 1/2 cos^-1 (-1/4) approx 1.174#

Explanation:

This seems like a problem that needs to be solved with a graphing calculator - the actual process is quite involved. I describe it here for reference.

#tan^2(2x-pi/6)=11-sec(2x-pi/6)#

We begin by moving everything to one side.

#tan^2(2x-pi/6)+ sec(2x-pi/6) - 11 = 0#

We substitute using the identity #tan^2(x) = sec^2(x) - 1#

#sec^2(2x-pi/6) + sec(2x-pi/6) - 12 = 0#

This can be factored into:

#(sec(2x-pi/6)-3)(sec(2x-pi/6)+4) = 0#

Which we split into two equations.

#sec(2x-pi/6)-3 = 0#
#sec(2x-pi/6)+4 = 0#

I will now continue with the simplification, which is relatively straightforward.

#sec(2x-pi/6)-3 = 0#
#sec(2x-pi/6) = 3#
#cos(2x-pi/6) = 1/3#
#2x - pi/6 = 2pi n_1 + cos^-1 (1/3)# or #2x - pi/6 = 2pi n_2 - cos^-1 (1/3)#
#x = pi/12 - 1/2 cos^-1 (1/3) + pi n_1 # or #x = pi/12 + 1/2 cos^-1 (1/3) + pi n_2#

and

#sec(2x-pi/6)+4 = 0#
#sec(2x-pi/6) = -4#
#cos(2x-pi/6) = -1/4#
#2x - pi/6 = 2pi n_3 + cos^-1 (-1/4)# or #2x-pi/6 = 2pi n_4 - cos^-1 (-1/4)#
#x = pi/12 - 1/2 cos^-1 (-1/4) + pi n_3# or #x = pi/12 + 1/2 cos^-1 (-1/4) + pi n_4#

Since #0 <= x <= pi#, we look for values of #n_1#, #n_2#, #n_3#, and #n_4# (note: must be integers) to meet this constraint. I personally plugged in -1, 0, and 1 to see which would work.

We find that:
#n_1 = 1#
#n_2 = 0#
#n_3 = 1#
#n_4 = 0#
for #x# to meet its constraint.

Finally, we get our answer:

#x = pi/12 - 1/2 cos^-1 (1/3) + pi approx 2.788#
#x = pi/12 + 1/2 cos^-1 (1/3)approx 0.877#
#x = pi/12 - 1/2 cos^-1 (-1/4) + pi approx 2.492#
#x = pi/12 + 1/2 cos^-1 (-1/4) approx 1.174#
#square#

EDIT: we can verify our result graphically, using Wolfram Mathematica. We see that there are clearly 4 intersections.

Jake Lee, 2018