Cosx-sinx/cosx+sinx simplify?

1 Answer
Feb 22, 2018

\qquad \qquad \qquad \qquad {cosx-sinx}/{cosx+sinx}=sec2x-tan2x.

Explanation:

"One way to simplify this could be:"

{cosx-sinx}/{cosx+sinx}={cosx-sinx}/{cosx+sinx} cdot {cosx-sinx}/{cosx-sinx}

\qquad \qquad \qquad ={(cosx-sinx)^2}/{(cosx-sinx)(cosx+sinx)}

\qquad \qquad \qquad ={cos^2x-2cosxsinx+sin^2x}/{cos^2x-sin^2x}

"[now recall that:" \ 2cosxsinx=sin2x; cos^2x-sin^2x=cos2x"]"

\qquad \qquad \qquad ={(sin^2x+cos^2x)-sin2x}/{cos2x}

"[now recall that:" \ quad sin^2x+cos^2x=1"]"

\qquad \qquad \qquad ={1-sin2x}/{cos2x}

\qquad \qquad \qquad ={1}/{cos2x} - {sin2x}/{cos2x}

\qquad \qquad \qquad =sec2x-tan2x.

"Thus, we have:"

\qquad \qquad \qquad \qquad \qquad \qquad {cosx-sinx}/{cosx+sinx}=sec2x-tan2x.