If alpha and beta are the zeros of x^2+pc+q, find (Alpha/beta +2)(beta/alpha+2) ?

If #alpha and beta# are the zeros of #x^2+px+q,# find
#(alpha/beta +2)(beta/alpha+2) ?#

3 Answers
Feb 22, 2018

The answer is #=(2p^2+q)/q#

Explanation:

The quadratic equation is

#x^2+px+q=0#

The roots are #alpha# and #beta#

Therefore,

#alpha+beta=-p#... .....#(1)#

and

#alphabeta=q#..........#(2)#

We need

#(alpha/beta+2)(beta/alpha+2)=1+2alpha/beta+2beta/alpha+4#

#(alpha/beta+beta/alpha=(alpha^2+beta^2)/(alphabeta))#

#=((alpha+beta)^2-2alphabeta)/(q)#

#=(p^2-2q)/q#

Finally,

#(alpha/beta+2)(beta/alpha+2)=5+2*(p^2-2q)/q#

#=(5q+2p^2-4q)/(q)#

#=(2p^2+q)/q#

Feb 22, 2018

# 2*p^2/q+1, or, 1/q(2p^2+q)#.

Explanation:

Given that #alpha and beta# are the zeroes of #x^2+px+q#, we have

#alpha+beta=-p, and, alpha*beta=q.................(ast)#.

#"Now, the reqd. value"=(alpha/beta+2)(beta/alpha+2)#,

#=4+2(alpha/beta+beta/alpha)+(alpha/beta)(beta/alpha)#,

#=4+{2(alpha^2+beta^2)}/(alpha*beta)+1#,

#={4alpha*beta+2(alpha^2+beta^2)}/(alpha*beta)+1#,

#={2(alpha+beta)^2}/(alpha*beta)+1#,

#={2(-p)^2}/q+1................[because, (ast)]#,

#=2*p^2/q+1, or, 1/q(2p^2+q)#.

Thus,
#(alpha/beta+2)(beta/alpha+2)=(q+2p^2)/q#

Explanation:

Given:
#alpha #is a root of #x^2+px+q=0#
#beta #is a root of #x^2+px+q=0#
#"If ax^2+bx+c=0, " then'#
#alpha + beta = -b/a#
Here, #a=1 b=p, c=q,#
Substituting
#alpha + beta =-p/1=-p#
#alphabeta = c/a=q/1=q#
#(alpha/beta+2)(beta/alpha+2)=(alpha+2beta)/betaxx(beta+2alpha)/alpha#
#=((alpha+2beta)(beta+2alpha))/(alphabeta)#

#=(alphabeta+2beta^2+2alpha^2+4alphabeta)/(alphabeta)#

#=(alphabeta+2(alpha+beta)^2)/(alphabeta)#

#=(q+2(-p)^2)/q#

#(alpha/beta+2)(beta/alpha+2)=(q+2p^2)/q#

Thus,
#(alpha/beta+2)(beta/alpha+2)=(q+2p^2)/q#