How do I find f'(x) for f(x)=7(x^(4/5))-8(x^(6/7))?

I got as far as 5.6(x^(-1/5))-6.857(x^(-1/7)) but this does not appear to be either the final form of the answer or the correct answer according to the system I do homework on. I'm confused about the power rules, and would appreciate any help!

1 Answer
Feb 24, 2018

#f^{'}(x)\ \ =\ \ \frac{28}{5x^{\frac{1}{5}}}-\frac{48}{7x^{\frac{1}{7}}}#

Explanation:

#f(x) = 7x^{\frac{4}{5}}-8x^{\frac{6}{7}#

#f^'(x) = \frac{d}{dx}(7x^{\frac{4}{5}}-8x^{\frac{6}{7}})#

# #

#\text{Apply the Sum/Difference of derivative Rule}:#

#\quad (f(x)\pm g(x))^'=f^'(x)\pm g^'(x)#

# #

#=\frac{d}{dx}(7x^{\frac{4}{5}})-\frac{d}{dx}(8x^{\frac{6}{7}})#

# #
# #

Take the constant out #\ \ \ \ ##(a\cdot f(x))^'=a\cdot f^'(x)##\ \ \ \ # and apply the power rule #\ \ \ \ ##\quad \frac{d}{dx}(x^a)=a\cdot x^{a-1}##\ \ \ \ # to get:

#=7\frac{d}{dx}(x^{\frac{4}{5}})-8\frac{d}{dx}(x^{\frac{6}{7}})#

#=7\cdot \frac{4}{5}x^{\frac{4}{5}-1}-8\cdot \frac{6}{7}x^{\frac{6}{7}-1}#

# #

Simplify the exponents and then rewrite the terms by using the exponent rule #\ \ \# #a^{-b}=\frac{1}{a^b}#

#=\frac{28}{5}x^{-\frac{1}{5}}\ \ -\ \ \frac{48}{7}x^{-\frac{1}{7}}#

#=\frac{28}{5x^{\frac{1}{5}}}-\frac{48}{7x^{\frac{1}{7}}}#

# #
# #

That's it!