How do you verify cot^2x*cos^2x = cot^2x-cos^2xcot2xcos2x=cot2xcos2x?

2 Answers
Feb 24, 2018

See the proof below

Explanation:

We need

cos^2x=1-sin^2xcos2x=1sin2x

cotx=cosx/sinxcotx=cosxsinx

Therefore,

LHS=cot^2xcos^2xLHS=cot2xcos2x

=cot^2x(1-sin^2x)=cot2x(1sin2x)

=cot^2x-cot^2xsin^2x=cot2xcot2xsin2x

=cot^2x-cos^2x/cancel(sin^2x)*cancel(sin^2x)

=cot^2x-cos^2x

=RHS

QED

Feb 24, 2018

See the answer below...

Explanation:

cot^2x cdot cos^2x

=cot^2x cdot (1-sin^2x)

=cot^2x-cot^2x cdot sin^2x

=cot^2x-cos^2x/sin^2x cdot sin^2x

=cot^2x-cos^2x" "[Proved...]

Hope it helps...
Thank you...