How do you verify #cot^2x*cos^2x = cot^2x-cos^2x#?

2 Answers
Feb 24, 2018

See the proof below

Explanation:

We need

#cos^2x=1-sin^2x#

#cotx=cosx/sinx#

Therefore,

#LHS=cot^2xcos^2x#

#=cot^2x(1-sin^2x)#

#=cot^2x-cot^2xsin^2x#

#=cot^2x-cos^2x/cancel(sin^2x)*cancel(sin^2x)#

#=cot^2x-cos^2x#

#=RHS#

#QED#

Feb 24, 2018

See the answer below...

Explanation:

#cot^2x cdot cos^2x#

#=cot^2x cdot (1-sin^2x)#

#=cot^2x-cot^2x cdot sin^2x#

#=cot^2x-cos^2x/sin^2x cdot sin^2x#

#=cot^2x-cos^2x" "#[Proved...]

Hope it helps...
Thank you...