What is the integral of 2xe^x?

Please help me how to solve this problem.

2 Answers
Feb 24, 2018

int2xe^xdx=2(xe^x-e^x)+C2xexdx=2(xexex)+C

Explanation:

To find:

int2xe^xdx2xexdx

By constant rule

int2xe^xdx=2intxe^xdx2xexdx=2xexdx

Let I= intxe^xdxI=xexdx

int2xe^xdx=2I2xexdx=2I

We can integrate using the parts rule

intudv=uv-intvduudv=uvvdu

Here,

u=xtodu=dxu=xdu=dx

dv=e^xdxtov=e^xdv=exdxv=ex

Substituting

intxe^xdx=xe^x-inte^xdxxexdx=xexexdx

inte^xdx=e^xexdx=ex

intxe^xdx=xe^x-e^xxexdx=xexex

I=xe^x-e^xI=xexex

int2xe^xdx=2(xe^x-e^x)+C2xexdx=2(xexex)+C

Feb 24, 2018

2xe^(x)-2e^(x)+C

Explanation:

We have: int(2xe^(x))dx(2xex)dx

This integral can be evaluated using integration by parts.

Let u=2x Rightarrow frac(du)(dx)=2u=2xdudx=2 and frac(dv)(dx)=e^(x) Rightarrow v=e^(x)dvdx=exv=ex:

Rightarrow int(2xe^(x))dx=2xe^(x)-int(2e^(x))dx(2xex)dx=2xex(2ex)dx

therefore int(2xe^(x))dx=2xe^(x)-2e^(x)+C