Let A={8,9,10,11} & B={2,3,4,5} & R be the relation from A to B defined by (x,y) belongs to R such that "y divides x". Then the domain of R is?

1 Answer
Feb 25, 2018

\qquad \qquad \qquad \qquad \qquad \qquad "domain of" \ \ R \ = \ { 8, 9, 10 }.

Explanation:

"We are given:"

"i)"\ \ \quad A \ = \ { 8, 9, 10, 11 }.

"ii)"\ \quad B \ = \ { 2, 3, 4, 5 }.

"iii)" \quad R \ \ "is the relation from" \ A \ "to" \ B, "defined as follows:"

\qquad \qquad \qquad \qquad \qquad \qquad \qquad ( x, y ) \in R \quad hArr \quad y \quad "divides" \quad x.

"We want to find:"

\qquad \qquad "The domain of" \quad R.

"We can proceed as follows."

"1)" \quad R \ \ "can be restated as:"

\qquad \qquad \qquad \qquad \qquad \quad \ ( x, y ) \in R \quad hArr \quad x \quad "is a multiple of" \quad y.

"2)" \quad \ "So, we observe:"

\qquad \qquad x \in "domain of" \ R \quad hArr \quad ( x, y ) \in R, \quad "for some" \ \ y \in B

\qquad \qquad \qquad \qquad \qquad \quad hArr \quad x \quad "is a multiple of" \quad y, \quad "for some" \ y \in B

\qquad \qquad \qquad \qquad \qquad \quad hArr \quad B \ "contains a multiple of" \ x.

\qquad \quad \ "So, from beginning to end here, we conclude:"

\qquad \qquad \quad x \in "domain of" \ R \quad hArr \quad B \ "contains a multiple of" \ x.

"3)" \quad \ "So, to find the domain of" \ R, "we keep those elements of" \ A \ "that are a multiple of something in" \ B. \ \ "This is not hard to do:"

\qquad \qquad \qquad \qquad A \ = \ { 8, 9, 10, 11 } \qquad \qquad B \ = \ { 2, 3, 4, 5 }.

"We see:"

\qquad \qquad \ \ 8 \quad "is a multiple of" \quad 2 \ ( "and" \ 4 ), \qquad 9 \quad "is a multiple of" \quad 3,

10 \quad "is a multiple of" \quad 2, \qquad 11 \quad "is not a multiple of anything in" \ B.

"So, we have now:"

\qquad \qquad \qquad \qquad 8, 9, 10 \quad "are in the domain of" \ R;
\qquad \qquad \qquad \qquad \ \ 11 \quad "is not in the domain of" \ R.

"So, finally, we conclude:"

\qquad \qquad \qquad \qquad \qquad \qquad "domain of" \ R \ = \ { 8, 9, 10 }.