1÷sin^4x+cos^4x+sin^2xcos^2x.how will you integrate this?

1 Answer
Feb 25, 2018

Therefore

int1/(sin^4x+cos^4x+sin^2xcos^2x)dx=-1/6ln(tan^3x-1)-ln(tanx+1)-2/sqrt3tan^-1(tanx-1/2)+C1sin4x+cos4x+sin2xcos2xdx=16ln(tan3x1)ln(tanx+1)23tan1(tanx12)+C

Explanation:

Hope the question is of the form

int1/(sin^4x+cos^4x+sin^2xcos^2x)dx1sin4x+cos4x+sin2xcos2xdx

Let
u=cos^2x, v=sin^2xu=cos2x,v=sin2x

u^3-v^3=(u-v)(u^2+uv+v^2)u3v3=(uv)(u2+uv+v2)

Thus

u^2+uv+v^2=(u^3-v^3)/(u-v)u2+uv+v2=u3v3uv

1/(u^2+uv+v^2)=(u-v)/(u^3-v^3)1u2+uv+v2=uvu3v3

Substituting

1/(sin^4x+cos^4x+sin^2xcos^2x)=(cos^2x-sin^2x)/((cos^2x)^3-(sin^2x)^3)1sin4x+cos4x+sin2xcos2x=cos2xsin2x(cos2x)3(sin2x)3

Dividing throughout by cos^6xcos6x

1/(sin^4x+cos^4x+sin^2xcos^2x)=(sec^4x-sec^2xtan^2x)/(1-tan^6x)1sin4x+cos4x+sin2xcos2x=sec4xsec2xtan2x1tan6x

1/(sin^4x+cos^4x+sin^2xcos^2x)=(sec^2x(sec^2x-tan^2x))/(1-tan^6x)1sin4x+cos4x+sin2xcos2x=sec2x(sec2xtan2x)1tan6x

sec^2x-tan^2x=1sec2xtan2x=1

(sec^2x)/(1-tan^6x)sec2x1tan6x

"Now, ..."Now, ...

int1/(sin^4x+cos^4x+sin^2xcos^2x)dx=int(sec^2x)/(1-tan^6x)dx1sin4x+cos4x+sin2xcos2xdx=sec2x1tan6xdx

Thus,

If
t=tanxt=tanx

dt=sec^2xdxdt=sec2xdx

int(sec^2x)/(1-tan^6x)dx=int(dt)/(1-t^6)dxsec2x1tan6xdx=dt1t6dx

1/(1-t^6)=A/(1-t^3)+B/(1+t^3)11t6=A1t3+B1+t3

1=A(1+t^3)+B(1-t^3)1=A(1+t3)+B(1t3)

1=A+At^3+B-Bt^31=A+At3+BBt3

1=(A+B)+(A-B)t^31=(A+B)+(AB)t3

Equating the coefficients of like powers of t

1=A+B1=A+B

0=A-B0=AB

IE

A=BA=B

A=1/2, B=1/2A=12,B=12

1/(1-t^6)=A/(1-t^3)+B/(1+t^3)11t6=A1t3+B1+t3

1/(1-t^6)=(1/2)/(1-t^3)-(1/2)/(1+t^3)11t6=121t3121+t3

1/(1-t^6)=1/2(1/(1-t^3)-1/(1+t^3))11t6=12(11t311+t3)

Let

I_1=int1/(1-t^3)dtI1=11t3dt

I_2=int1/(1+t^3)dtI2=11+t3dt

1/(1-t^3)=1/((1-t)(1+t+t^2))=C/(1-t)+(Dt+E)/(1+t+t^2)11t3=1(1t)(1+t+t2)=C1t+Dt+E1+t+t2

1/((1-t)(1+t+t^2))=C/(1-t)+(Dt+E)/(1+t+t^2)1(1t)(1+t+t2)=C1t+Dt+E1+t+t2

1=C(1+t+t^2)+(Dt+E)(1-t)1=C(1+t+t2)+(Dt+E)(1t)

1=C+Ct+Ct^2+Dt+E-Dt^2-Et1=C+Ct+Ct2+Dt+EDt2Et

1=(C+E)+(C+D-E)t+(C-D)t^21=(C+E)+(C+DE)t+(CD)t2

Equating the coefficients of like powers of t

0=C+E0=C+E

E=-CE=C

0=C+D-E0=C+DE

0=C+D+C0=C+D+C

0=2C+D0=2C+D

D=-2CD=2C

C-D=1CD=1

C+2C=1C+2C=1

3C=13C=1

C=1/3C=13

D=-2/3D=23

E=-1/3E=13

1/((1-t)(1+t+t^2))=C/(1-t)+(Dt+E)/(1+t+t^2)1(1t)(1+t+t2)=C1t+Dt+E1+t+t2

1/((1-t)(1+t+t^2))=(1/3)/(1-t)+(-2/3t-1/3)/(1+t+t^2)1(1t)(1+t+t2)=131t+23t131+t+t2

1/((1-t)(1+t+t^2))=1/3(1/(1-t)-(2t+1)/(1+t+t^2))1(1t)(1+t+t2)=13(11t2t+11+t+t2)

1/((1-t)(1+t+t^2))=1/3(-1/(t-1)-(2t+1)/(t^2+t+1))1(1t)(1+t+t2)=13(1t12t+1t2+t+1)

1/((1-t)(1+t+t^2))=-1/3(1/(t-1)+(2t+1)/(t^2+t+1))1(1t)(1+t+t2)=13(1t1+2t+1t2+t+1)

I_1=int1/(1+t^3)dtI1=11+t3dt

I_1=int-1/3(1/(t-1)+(2t+1)/(t^2+t+1))dtI1=13(1t1+2t+1t2+t+1)dt

I_1=-int1/3(1/(t-1)+(2t+1)/(t^2+t+1))dtI1=13(1t1+2t+1t2+t+1)dt

I_1=-1/3(ln(t-1)+ln(t^2+t+1))I1=13(ln(t1)+ln(t2+t+1))

-1/3ln(t-1)(t^2+t+1)13ln(t1)(t2+t+1)

I_1=-1/3ln(t^3-1)I1=13ln(t31)

1/(1+t^3)=1/((1+t)(1-t+t^2))=C/(1+t)+(Dt+E)/(1-t+t^2)11+t3=1(1+t)(1t+t2)=C1+t+Dt+E1t+t2

1/((1+t)(1-t+t^2))=C/(1+t)+(Dt+E)/(1-t+t^2)1(1+t)(1t+t2)=C1+t+Dt+E1t+t2

1=C(1-t+t^2)+(Dt+E)(1+t)1=C(1t+t2)+(Dt+E)(1+t)

1=C-Ct+Ct^2+Dt+E+Dt^2+Et1=CCt+Ct2+Dt+E+Dt2+Et

1=(C+E)+(-C+D-E)t+(C+D)t^21=(C+E)+(C+DE)t+(C+D)t2

Equating the coefficients of like powers of t

0=C+E0=C+E

E=-CE=C

0=-C+D-E0=C+DE

0=D0=D

D=0D=0

C+D=1C+D=1

C+0=1C+0=1

C=1C=1

D=-2/3D=23

E=-1E=1

1/((1+t)(1-t+t^2))=1/(1+t)+(0t-1)/(1-t+t^2)1(1+t)(1t+t2)=11+t+0t11t+t2

1/((1+t)(1-t+t^2))=1/(1+t)-1/(1-t+t^2)1(1+t)(1t+t2)=11+t11t+t2

I_2=int1/(1+t^3)dtI2=11+t3dt

I_2=int(1/(1+t)-1/(1-t+t^2))dtI2=(11+t11t+t2)dt

int(1/(1+t)dt=ln(t+1)(11+tdt=ln(t+1)

int(1/(1-t+t^2))dt=int(1/(t^2-t+1))dt(11t+t2)dt=(1t2t+1)dt

Completing the squares

t^2-t+1=t^2-2*1/2*t+(1/2)^2+1-(1/2)^2t2t+1=t2212t+(12)2+1(12)2

(t-1/2)^2+3/4(t12)2+34

(t-1/2)^2+(sqrt3/2)^2(t12)2+(32)2

Thus,

int(1/(t^2-t+1))dt=int1/((t-1/2)^2+(sqrt3/2)^2)dt(1t2t+1)dt=1(t12)2+(32)2dt

int1/((t-1/2)^2+(sqrt3/2)^2)dt=1/(sqrt3/2)tan^-1(t-1/2)1(t12)2+(32)2dt=132tan1(t12)

int1/((t-1/2)^2+(sqrt3/2)^2)dt=(2/sqrt3)tan^-1(t-1/2)1(t12)2+(32)2dt=(23)tan1(t12)

I_2=ln(t+1)+(2/sqrt3)tan^-1(t-1/2)I2=ln(t+1)+(23)tan1(t12)

t=tanxt=tanx

I_1=-1/3ln(t^3-1)I1=13ln(t31)
I_2=ln(t+1)+(2/sqrt3)tan^-1(t-1/2)I2=ln(t+1)+(23)tan1(t12)

I=1/2(I_1-I_2)I=12(I1I2)

I=1/2(-1/3ln(t^3-1)-(ln(t+1)+(2/sqrt3)tan^-1(t-1/2)))I=12(13ln(t31)(ln(t+1)+(23)tan1(t12)))

I=-1/6ln(t^3-1)-ln(t+1)-2/sqrt3tan^-1(t-1/2)I=16ln(t31)ln(t+1)23tan1(t12)

Thus,

int1/(sin^4x+cos^4x+sin^2xcos^2x)dx=-1/6ln(t^3-1)-ln(t+1)-2/sqrt3tan^-1(t-1/2)1sin4x+cos4x+sin2xcos2xdx=16ln(t31)ln(t+1)23tan1(t12)

t=tanxt=tanx

int1/(sin^4x+cos^4x+sin^2xcos^2x)dx=-1/6ln(tan^3x-1)-ln(tanx+1)-2/sqrt3tan^-1(tanx-1/2)+C1sin4x+cos4x+sin2xcos2xdx=16ln(tan3x1)ln(tanx+1)23tan1(tanx12)+C