How do you integrate this? int(1/(1+sinx+cosx))dx(11+sinx+cosx)dx

4 Answers
Feb 26, 2018

Break the fraction apart, solve the little pieces, then add them back together.

Explanation:

The fraction integrand can be separated into int((1/1)+(1/sin(x))+(1/cos(x)))dx((11)+(1sin(x))+(1cos(x)))dx. If an integrand can be separated, then all its parts can be solved separately.

This can be split into int1dx1dx + int(1/sin(x))dx(1sin(x))dx + int(1/cos(x))dx(1cos(x))dx

Which is equivalent to

intdxdx + intcsc(x)dxcsc(x)dx + intsec(x)dxsec(x)dx

intdxdx = xx,
intcsc(x)dxcsc(x)dx = ln|csc(x)-cot(x)| + Cln|csc(x)cot(x)|+C,
intsec(x)dxsec(x)dx = ln|sec(x)+tan(x)| + Cln|sec(x)+tan(x)|+C

Now the three parts are added together.

int(1/(1+sin(x)+cos(x)))dx(11+sin(x)+cos(x))dx = ln|csc(x)-cot(x)| + ln|sec(x)+tan(x)| +1 + Cln|csc(x)cot(x)|+ln|sec(x)+tan(x)|+1+C

In order to calculate this integral you may use the following transform

t=tan(x/2)t=tan(x2)

hence

sinx=(2t)/(1+t^2)sinx=2t1+t2 , cosx=(1-t^2)/(1+t^2)cosx=1t21+t2 , dx=2/(1+t^2)dtdx=21+t2dt

After some basic calculations which means just replace the above values to the integral and deduce you will get

int 1/(1+sinx+cosx) dx=ln(abs(1+tan(x/2)))+c11+sinx+cosxdx=ln(1+tan(x2))+c

Feb 26, 2018

Kindly refer to the Explanation.

Explanation:

We have, 1+sinx+cosx=(1+cosx)+sinx1+sinx+cosx=(1+cosx)+sinx,

=2cos^2(x/2)+2sin(x/2)cos(x/2)=2cos2(x2)+2sin(x2)cos(x2),

=2cos^2(x/2){1+sin(x/2)/cos(x/2)}=2cos2(x2){1+sin(x2)cos(x2)},

=2/sec^2(x/2){1+tan(x/2)}=2sec2(x2){1+tan(x2)}.

:. I=int1/(1+sinx+cosx)dx,

=int(1/2*sec^2(x/2))/(1+tan(x/2))dx,

=int{d/dx(1+tan(x/2))}/(1+tan(x/2))dx,

=ln|1+tan(x/2)|+C," as Respected Konstantinos Michailidis Sir has already derived!"

Enjoy Maths.!

Feb 26, 2018

\quad \ int \ ( 1 /{ 1 + sin x + cos x } ) \ dx \ = \ ln \sqrt{ | { 1 + sin x } / { 1 + cos x } | } + C \quad.

Explanation:

"We want to find:"

\qquad \qquad \qquad int \ ( 1 /{ 1 + sin x + cos x } ) \ dx.

"We can proceed as follows:"

\qquad int \ 1 /{ 1 + sin x + cos x } \ dx

\qquad \qquad \quad \ = \ int \ ( 1 /{ 1 + sin x + cos x } ) cdot ( { 1 - ( sin x + cos x ) } /{ 1 - ( sin x + cos x ) } ) \ dx

\qquad \qquad \qquad = \ int \ { 1 - ( sin x + cos x ) } /{ ( 1 + sin x + cos x ) ( 1 - ( sin x + cos x ) ) ) \ dx

\qquad \qquad \qquad = \ int \ { 1 - ( sin x + cos x ) } /{ 1 - ( sin x + cos x )^2 ) \ dx

\qquad \qquad \qquad = \ int \ { 1 - ( sin x + cos x ) } /{ 1 - ( sin^2 x + 2 sinx cos x + cos^2 x ) } \ dx

\qquad \qquad \qquad = \ int \ { 1 - ( sin x + cos x ) } /{ 1 - ( sin^2 x + cos^2 x + 2 sin x cos x ) } \ dx

\qquad \qquad \qquad = \ int \ { 1 - ( sin x + cos x ) } /{ 1 - ( 1 + 2 sin x cos x ) } \ dx

\qquad \qquad \qquad = \ int \ { 1 - ( sin x + cos x ) } /{ color{red}cancel{1} - color{red}cancel{1} - 2 sin x cos x } \ dx

\qquad \qquad \qquad = \ - int \ { 1 - ( sin x + cos x ) } /{ 2 sin x cos x} \ dx

\quad = \ - int \ ( { 1 } /{ 2 sin x cos x } - { color{red}cancel{ sin x } } /{ 2 color{red}cancel{ sin x } cos x } - { color{red}cancel{ cosx } } /{ 2 sin x color{red}cancel{ cosx } } ) \ dx

\quad = \ - int \ ( { 1 } /{ sin 2 x } - { 1 } /{ 2 cos x } - { 1 } /{ 2 sin x } ) \ dx

\quad \ = \ - int \ ( csc 2 x - 1/2 sec x - 1/2 csc x ) \ dx

\quad \ = \ - ( - 1/2 ln | csc 2 x + cot 2 x | - 1/2 ln | sec x + tan x |

\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad + 1/2 ln | csc x + cot x | )

\quad \ = \ 1/2 ( \ ln | csc 2 x + cot 2 x | + ln | sec x + tan x |

\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad - ln | csc x + cot x | \ )

\quad \ = \ ln \sqrt{ { | csc 2 x + cot 2 x | cdot | sec x + tan x | } / { | csc x + cot x | } }

\quad \ = \ ln \sqrt{ { | { 1 + cos 2 x } / { sin 2 x } | cdot | { 1 + sin x } / { cos x } | } / { | { 1 + cos x } / { sin x } | } }

\quad \ = \ ln \sqrt{ | { { 1 + cos 2 x } / { sin 2 x } cdot { 1 + sin x } / { cos x } } / { { 1 + cos x } / { sin x } } | }

\quad \ = \ ln \sqrt{ | { 1 + cos 2 x } / { sin 2 x } cdot { 1 + sin x } / { cos x } cdot { sin x } / { 1 + cos x } | }

\quad \ = \ ln \sqrt{ | { ( sin^2 x + cos^2 x ) +( cos^2 x - sin^2 x ) } / { sin 2 x } cdot { 1 + sin x } / { cos x } cdot { sin x } / { 1 + cos x } | }

\quad \ = \ ln \sqrt{ | { color{red}cancel{ sin^2 x } + cos^2 x +cos^2 x - color{red}cancel{ sin^2 x } } / { sin 2 x } cdot { 1 + sin x } / { cos x } cdot { sin x } / { 1 + cos x } |

\quad \ = \ ln \sqrt{ | { color{red}cancel{ 2 } color{red}cancel{ cos^2 x } } / { color{red}cancel{ 2 } color{red}cancel{ sin x } color{red}cancel{ cos x } } cdot { 1 + sin x } / { color{red}cancel{ cos x } } cdot { color{red}cancel{ sin x } } / { 1 + cos x } | }

\quad \ = \ ln \sqrt{ | { 1 + sin x } / { 1 + cos x } | }\quad .

"So, at last !! :"

\quad \ int \ ( 1 /{ 1 + sin x + cos x } ) \ dx \ = \ ln \sqrt{ | { 1 + sin x } / { 1 + cos x } | } + C \quad. \quad \ square