1-cos theta = sin^2 theta / 1+cos theta?

1 Answer
Feb 26, 2018

See below.

Explanation:

#1-cos(theta)=sin^2(theta)/(1+cos(theta))#

Recall that #sin^2(theta)+cos^2(theta)=1#. Solving for #sin^2(theta)# yields:

#sin^2(theta)=1-cos^2(theta)#

Rewrite the right side using the above identity:

#1-cos(theta)=(1-cos^2(theta))/(1+cos(theta))#

Recall the difference of squares, which states that #(x^2-a^2)=(x+a)(x-a)#

Similarly, #(a^2-x^2)=(a+x)(a-x)#

For #(1-cos^2(theta)),# we can use difference of squares where #a^2=1, x^2=cos^2(theta), a=sqrt(1)=1, x=sqrt(cos^2(theta))=cos(theta):#

#(1-cos^2(theta))=(1+cos(theta))(1-cos(theta))#

Rewrite the right side again after applying this. #(1+cos(theta))# cancels:

#1-cos(theta)=(cancel(1+cos(theta))(1-cos(theta)))/cancel(1+cos(theta))#

#1-cos(theta)=1-cos(theta)#