How do you find the equations for the tangent to the curve in the point [-1,-2]?

x^2y^2=4x2y2=4

3 Answers
Feb 27, 2018

y= -2x-4y=2x4

Explanation:

Differentiate the equation implicitly:

x^2y^2 = 4x2y2=4

d/dx (x^2y^2) = 0ddx(x2y2)=0

2xy^2+2x^2ydy/dx = 02xy2+2x2ydydx=0

For x != 0x0:

y^2=-xydy/dxy2=xydydx

(1) " " dy/dx = -y/x(1) dydx=yx

The general equation of the tangent line in the point (x_0,y_0)(x0,y0) is:

y = y_0+ [dy/dx]_(x_0,y_0)(x-x_0)y=y0+[dydx]x0,y0(xx0)

that is, based on (1)(1)

y = y_0-y_0/x_0(x-x_0)y=y0y0x0(xx0)

and for x_0 = -1x0=1, y_0=-2y0=2:

y = -2-2(x+1)y=22(x+1)

y= -2x-4y=2x4

enter image source here

Feb 27, 2018

You can do it like this:

Explanation:

sf(x^2y^2=4)

Using The Product Rule:

sf((d[y^2])/(dx).x^2+y^2.(d[x^2])/(dx)=0)

Differentiating implicitly:

sf(2y.(dy)/(dx).x^2+y^(2).2x=0)

sf((dy)/(dx)=(-y^(cancel(2)).cancel(2x))/(cancel(2y).x^cancel(2)))

sf((dy)/(dx)=-y/x)

This gives the gradient m of the tangent line:

:.sf(m=-(-2)/(-1)=-2)

The tangent line is of the form:

sf(y=mx+c)

:.sf(-2=(-2xx-1)+c)

sf(c=-4)

So the equation of the tangent line is:

sf(y=-2x-4)

The functions look like this:

graph{(x^2y^2-4)(-2x-4-y)=0 [-10, 10, -5, 5]}

Feb 27, 2018

y=-2x-4

Explanation:

"differentiate "color(blue)"implicitly with respect to x"

"differentiate "x^2y^2" using the "color(blue)"product rule"

•color(white)(x)m_(color(red)"tangent")=dy/dx" at "(-1,-2)

rArr(x^2 .2ydy/dx+2xy^2)=0

rArr2x^2ydy/dx=-2xy^2

rArrdy/dx=(-2xy^2)/(2x^2y)=-y/x

dy/dx" at "(-1,-2)=-(-2)/(-1)=-2

rArry+2=-2(x+1)

rArry=-2x-4larrcolor(red)"equation of tangent"
graph{(x^2y^2-4)(y+2x+4)=0 [-20, 20, -10, 10]}