How to use DeMoivre's Theorem to find the indicated power of (sqrt 3 - i)^6 ?

1 Answer
Feb 27, 2018

-64

Explanation:

sqrt(3) - i = 2(sqrt(3)/2 - i/2) = 2 (cos(-30°) + i*sin(-30°))
= 2*e^(-i * pi/6)
=> (sqrt(3) - i)^6 = (2*e^(-i*pi/6))^6 = 64*e^(-i*pi)
= 64*(cos(-180°) + i*sin(-180°))
= 64*(-1 + i * 0)
= -64