How do you solve for 0 ≤ x < 2π using the equation 4sin ² x - 1 = 0 ?
1 Answer
Feb 28, 2018
Explanation:
Given,
0<=x<(pi/2)rArrsinx=1/2=sin(pi/6)rArrx=color(red)(pi/6) (pi/2) <= x<(pi)rArrsinx=1/2=sin(pi-pi/6)=sin((5pi)/6)rArrx=color(red)((5pi)/6) pi<=x<(3pi)/2rArrsinx=-1/2=sin(pi+pi/6)=sin((7pi)/6)rArrx=color(red)((7pi)/6) (3pi)/2<=x<2pirArrsinx=-1/2=sin(2pi-pi/6)=sin((11pi)/6)rArrx=color(red)((11pi)/6)
Note:The general solution is
sinx=+-1/2rArrsinx=sin(+-pi/6)
So,
x=kpi+(-1)^k(+-pi/6),kinZ
Takingk=0,+-1,+-2,... we can obtain above answer.