How do you solve for 0 ≤ x < 2π using the equation 4sin ² x - 1 = 0 ?

1 Answer
Feb 28, 2018

#pi/6,(5pi)/6,(7pi)/6,(11pi)/6#

Explanation:

#4sin^2x-1=0rArrsin^2x=1/4rArrsinx=color(red)(+-1/2)#
Given,#0<=x<2pi#

  • #0<=x<(pi/2)rArrsinx=1/2=sin(pi/6)rArrx=color(red)(pi/6)#
  • #(pi/2) <= x<(pi)rArrsinx=1/2=sin(pi-pi/6)=sin((5pi)/6)rArrx=color(red)((5pi)/6)#
  • #pi<=x<(3pi)/2rArrsinx=-1/2=sin(pi+pi/6)=sin((7pi)/6)rArrx=color(red)((7pi)/6)#
  • #(3pi)/2<=x<2pirArrsinx=-1/2=sin(2pi-pi/6)=sin((11pi)/6)rArrx=color(red)((11pi)/6)#
    Note:The general solution is
    #sinx=+-1/2rArrsinx=sin(+-pi/6)#
    So,
    #x=kpi+(-1)^k(+-pi/6),kinZ#
    Taking # k=0,+-1,+-2,...#we can obtain above answer.