How do you write in terms of theta tan(theta-pi/6)? Thanks.

1 Answer
Mar 1, 2018

color (blue)(tan (theta-pi/6)=(sqrt3 tan theta-1)/(sqrt3+tan theta))tan(θπ6)=3tanθ13+tanθ

Explanation:

So we have
tan (theta-pi/6)tan(θπ6)

color (green)(Tan (A-B)=(tan A-tanB)/(1+tan A tanB) tan(AB)=tanAtanB1+tanAtanB

Here A=theta" ,"B=pi/6A=θ ,B=π6

Plugging in values

tan (theta-pi/6)= (tan theta-tan (pi/6))/(1+tan theta*tan (pi/6))tan(θπ6)=tanθtan(π6)1+tanθtan(π6)

color (red)(tan (pi/6)=1/sqrt3)tan(π6)=13

tan (theta-pi/6)= (tan theta-1/sqrt3)/(1+tan theta*1/sqrt3)tan(θπ6)=tanθ131+tanθ13

tan (theta-pi/6)=((sqrt3 tan theta-1)*cancel (1/sqrt3))/((sqrt3+tan theta)*cancel (1/sqrt3))

tan (theta-pi/6)=(sqrt3 tan theta-1)/(sqrt3+tan theta)

Hope it helps!