So we have
tan (theta-pi/6)tan(θ−π6)
color (green)(Tan (A-B)=(tan A-tanB)/(1+tan A tanB) tan(A−B)=tanA−tanB1+tanAtanB
Here A=theta" ,"B=pi/6A=θ ,B=π6
Plugging in values
tan (theta-pi/6)= (tan theta-tan (pi/6))/(1+tan theta*tan (pi/6))tan(θ−π6)=tanθ−tan(π6)1+tanθ⋅tan(π6)
color (red)(tan (pi/6)=1/sqrt3)tan(π6)=1√3
tan (theta-pi/6)= (tan theta-1/sqrt3)/(1+tan theta*1/sqrt3)tan(θ−π6)=tanθ−1√31+tanθ⋅1√3
tan (theta-pi/6)=((sqrt3 tan theta-1)*cancel (1/sqrt3))/((sqrt3+tan theta)*cancel (1/sqrt3))
tan (theta-pi/6)=(sqrt3 tan theta-1)/(sqrt3+tan theta)
Hope it helps!