How would you integrate int_1^e 1/(x sqrt(ln^2x))dx ?

int_1^e 1/(x sqrt(ln^2x))dx

2 Answers
Mar 1, 2018

This integral does not exist.

Explanation:

Since ln x>0 in the interval [1,e], we have

sqrt{ln^2 x}= |ln x| = ln x

here, so that the integral becomes

int_1^e dx/{x ln x}

Substitute ln x = u, then dx/x = du so that

int_1^e dx/{x ln x} = int_{ln 1}^{ln e} {du}/u = int_0^1 {du}/u

This is an improper integral, since the integrand diverges at the lower limit. This is defined as

lim_{l -> 0^+} int_l^1 {du}/u

if this exists. Now

int_l ^1 {du}/u = ln 1 - ln l = -ln l

since this diverges in the limit l -> 0^+, the integral does not exist.

Mar 1, 2018

pi/2

Explanation:

The integral int_1^e("d"x)/(xsqrt(1-ln^2(x)).

Substitute first u=ln(x) and "d"u=("d"x)/x.

Thus, we have
int_(x=1)^(x=e)("d"u)/sqrt(1-u^2)

Now, substitute u=sin(v) and "d"u=cos(v)"d"v.

Then,
int_(x=1)^(x=e)(cos(v))/(sqrt(1-sin^2(v)))\ "d"v=int_(x=1)^(x=e)"d"v since 1-sin^2(v)=cos^2(v).

Continuing, we have
[v]_(x=1)^(x=e)=[arcsin(u)]_(x=1)^(x=e)=[arcsin(ln(x))]_(x=1)^(x=e)=arcsin(ln(e))-arcsin(ln(1))=pi/2-0=pi/2