How to solve #5x^2+20x+13=0# by completing the square?

2 Answers
Mar 1, 2018

#x=(-10+-sqrt(35))/5#

Explanation:

#5x^2+20x+13=0#
Multiplying both sides by 5, we get
#25x^2+100x+65=0#
#rArr25x^2+2(5x)(10)+100-35=0#
#rArr(5x)^2+2(5x)(10)+(10)^2-35=0#
#rArr(5x+10)^2-35=0#
#rArr(5x+10)^2=35=(sqrt(35))^2#
#rArr5x+10=+-sqrt35#
#5x=-10+-sqrt35#
#x=(-10+-sqrt35)/5#

Mar 2, 2018

#5x^2+20x+13=0#

#1/5(x^2 + 4x +13/5) = 0#

#x^2 + 4x +13/5=0#

Now, add and subtract, half of the x-term squared, i.e. #(4/2)^2=2^2 = 4#

#=>[x^2 + 4x +4] +[13/5-4]=0#

#=>[x^2 + 4x +2^2] =[4-13/5]#

#=>(x+2)^2 =20/5-13/5#

#=>(x+2) =+-sqrt(7/5#

#=>x =-2+-sqrt(7/5#