If f(x)=5x2+6 and g(x)=3x+3, what is (fg)(3)?

3 Answers
Mar 2, 2018

39

Explanation:

Remember that (fg)(x)=f(x)g(x).

Here, f(x)=5x2+6 and g(x)=3x+3.

f(x)g(x)=h(x)=5x2+6(3x+3)

h(x)=5x2+6+3x3

h(x)=(fg)(x)=5x2+3x+3

So, we now have (fg)(x). Next, we can do:

(fg)(3)=h(3)=5(3)2+3(3)+3

(fg)(3)=39

Our answer.

Mar 2, 2018

(fg)(3)=39

Explanation:

(fg)(x)=f(x)g(x)

(fg)(x)=5x2+6(3x+3)

(fg)(x)=5x2+6+3x3

(fg)(x)=5x2+3x+3

.to evaluate (fg)(3) substitute x = - 3 into (fg)(x)

(fg)(3)=(5×(3)2)+(3×3)+3

××××=(5×9)9+3

××××=459+3=39

Mar 2, 2018

39

Explanation:

we have got f(x)=5x2+6
we have to find f-g..so lets find it f-g=5x2+6+3x3= 5x2+3x+3

now put x=-3 in above equation
we ll get result
thnx!!!