What is the logarithmic differentiation to evaluate for f(x)=(x)^ln(3) ?

1 Answer
Mar 3, 2018

f'(x)=ln(3)x^(ln(3)-1)

Explanation:

We have: f(x)=x^(ln(3)) Rightarrow y=x^(ln(3))

Let's apply ln to both sides of the equation:

Rightarrow ln(y)=ln(x^(ln(3)))

Rightarrow ln(y)=ln(3) cdot ln(x)

Then, let's differentiate both sides with respect to x:

Rightarrow frac(d)(dx)(ln(y))=frac(d)(dx)(ln(3) cdot ln(x))

Rightarrow frac(dy)(dx) cdot frac(d)(dy)(ln(y))=ln(3)frac(d)(dx)(ln(x))

Rightarrow frac(dy)(dx) cdot frac(1)(y)=frac(ln(3))(x)

Rightarrow frac(dy)(dx)=frac(yln(3))(x)

Rightarrow frac(dy)(dx)=frac(x^(ln(3)) cdot ln(3))(x)

Rightarrow frac(dy)(dx)=ln(3)x^(ln(3)-1)

therefore f'(x)=ln(3)x^(ln(3)-1)