What is the perimeter of a triangle with corners at #(6 ,5 )#, #(8 ,2 )#, and #(4 ,7 )#?

1 Answer

Perimeter = 62

Explanation:

Let #(6,5)# = #A# , #(8,2)# = #B# and #(4,7)# = #C#
Formula of distance between points is :
#sqrt ((x_2-x_1)^2+(y_2-y_1)^2#
Find the distance between A and B:
Let #(6,5)# = #(x_1,y_1)# #and# #(8,2)# = #(x_2,y_2)#
#=># #sqrt ((8-6)^2+(2-5)^2)#
#=># #sqrt ((2)^2+(-3)^2)#
#=># #sqrt ((4+9)^2)#
#=># #sqrt ((13)^2)#
#=># #13#

Find the distance between B and C:
Let #(8,2)# = #(x_1,y_1)# #and# #(4,7)# = #(x_2,y_2)#
#=># #sqrt ((4-8)^2+(7-2)^2)#
#=># #sqrt ((-4)^2+(5)^2)#
#=># #sqrt ((16+25)^2)#
#=># #sqrt ((41)^2)#
#=># #41#

Find the distance between C and A:
Let #(4,7)# = #(x_1,y_1)# #and# #(6,5)# = #(x_2,y_2)#
#=># #sqrt ((6-4)^2+(5-7)^2)#
#=># #sqrt ((2)^2+(-2)^2)#
#=># #sqrt ((4+4)^2)#
#=># #sqrt ((8)^2)#
#=># #8#

Perimeter = #AB + BC + CA#
#=># #13 + 41 + 8#
#=># #62#