Simplify?

secx/sinx-sinx/cosx

3 Answers
Mar 4, 2018

Write everything in terms of sinx and cosx. These are the identities you need to use:

secx=1/cosx

cotx=cosx/sinx

cos^2x+sinx^2=1

=>cos^2x=1-sin^2x

Here's the actual problem:

color(white)=secx/sinx-sinx/cosx

=(1/cosx)/sinx-sinx/cosx

=((1/cosx)*cosx)/(sinx*cosx)-(sinx*sinx)/(sinx*cosx)

=((1/color(red)cancelcolor(black)cosx)*color(red)cancelcolor(black)cosx)/(sinx*cosx)-(sinx*sinx)/(sinx*cosx)

=1/(sinx*cosx)-(sin^2x)/(sinx*cosx)

=(1-sin^2x)/(sinx*cosx)

=cos^2x/(sinx*cosx)

=cos^color(red)cancelcolor(black)2x/(sinx*color(red)cancelcolor(black)cosx)

=cosx/sinx

=cotx

Mar 4, 2018

secx/sinx-sinx/cosx=

1/(cosxsinx)-sinx/cosx=

1/(cosxsinx)-(sinx(sinx))/(cosx(sinx))=

(1-sin^2x)/(cosxsinx)=

cos^2x/(cosxsinx)=

cosx/sinx=

cotx

Mar 4, 2018

The answer is cot(x).

Explanation:

sec(x)/sin(x)-sin(x)/cos(x)

Using sec(t)=1/cos(t), transform the expression.
=1/cos(x)/sin(x)-sin(x)/cos(x)

Simplify the complex fraction.
=1/cos(x)sin(x)-sin(x)/cos(x)

Write all numerators above the least common denominator cos(x)sin(x).
=1-sin(x)^2/cos(x)sin(x)

Using 1-sin(t)^2=cos(t)^2, simplify the expression.
=cos(x)^2/cos(x)sin(x)

Reduce the fraction with cos(x)
=cos(x)/sin(x)

Using cos(t)/sin(t)=cot(t), transform the expression.
=cot(x)

I know this is freaking messy, sorry :)