Find the differential of y in the function: y=(x^2-4)/(x-3) ?

1 Answer
Mar 4, 2018

#dy/dx=(x^2-6x+4)/(x-3)^2#

Explanation:

We want to find the derivative of

#y=(x^2-4)/(x-3)#

Use the quotient rule, if #y=f/g#

then #dy/dx=(f'*g-f*g')/g^2#, thus

  • #f=x^2-4=>f'=2x#
  • #g=x-3=>g'=1#

By the quotient rule

#dy/dx=(2x(x-3)-(x^2-4))/(x-3)^2#

#=(2x^2-6x-x^2+4)/(x-3)^2#

#=(x^2-6x+4)/(x-3)^2#