Find the differential of y in the function: y=(x^2-4)/(x-3) ?

1 Answer
Mar 4, 2018

dy/dx=(x^2-6x+4)/(x-3)^2

Explanation:

We want to find the derivative of

y=(x^2-4)/(x-3)

Use the quotient rule, if y=f/g

then dy/dx=(f'*g-f*g')/g^2, thus

  • f=x^2-4=>f'=2x
  • g=x-3=>g'=1

By the quotient rule

dy/dx=(2x(x-3)-(x^2-4))/(x-3)^2

=(2x^2-6x-x^2+4)/(x-3)^2

=(x^2-6x+4)/(x-3)^2