How do you simplify sqrt88 * sqrt338833?

2 Answers
Mar 6, 2018

22sqrt6226. See below

Explanation:

sqrt88·sqrt33=sqrt(11·2^3)·sqrt(11·3)=sqrt11·sqrt(2^3)·sqrt11·sqrt38833=1123113=1123113

Because is a product we can reorganize by conmutativity

sqrt11·sqrt(2^3)·sqrt11·sqrt3=sqrt11·sqrt11·sqrt(2^3)·sqrt31123113=1111233

But sqrt(2^3)=sqrt(2·2^2)=sqrt(2^2)·sqrt2=2sqrt223=222=222=22 and

sqrt11·sqrt11=111111=11. And so:

sqrt11·sqrt11·sqrt(2^3)·sqrt3=11·2·sqrt2·sqrt3=22sqrt(2·3)=22sqrt61111233=11223=2223=226

Mar 6, 2018

You factorize both arguments:

Explanation:

sqrt88=sqrt(2xx2xx2xx11)=2sqrt(2xx11)=2sqrt2xxsqrt1188=2×2×2×11=22×11=22×11

sqrt33=sqrt(3xx11)=sqrt3xxsqrt1133=3×11=3×11

Now multiply:

2sqrt2xxsqrt11xxsqrt3xxsqrt1122×11×3×11

Rearrange:

=2sqrt2xxsqrt3xx(sqrt11xxsqrt11)=22×3×(11×11)

=2sqrt2xxsqrt3xx11=(2xx11)xxsqrt(2xx3)=22×3×11=(2×11)×2×3

=22sqrt6=226