How do you simplify #2^7+2^4#?

3 Answers
Mar 6, 2018

The answer is #144#.

Explanation:

In standard form, #2^7# would be #2xx2xx2xx2xx2xx2xx2# which equals #128#.

And #2^4# would be #2xx2xx2xx2# and it equals #16#.

#128+16 = 144#

#2^7+2^4=144#

Explanation:

#2^7+2^4=2^(4+3) +2^4#
#=2^4xx2^3+2^4#
#=2^4xx(2^3+1)#
#2^3=8, 2^4=16#
#2^3xx(2^4+1)=16xx(8+1)#
#=16xx9#
#=144#
Hence,
#2^7+2^4=144#

Mar 6, 2018

#144#

Explanation:

Compare #2^7 + 2^4# with #x^7 + x^4#

We can factorise #x^7 +x^4#

#=x^4(x^3+1)" "larr# cannot be simplified further

Do the same with #2^7 +2^4#

#=2^4(2^3+1)" "larr# they are values and can be calculated:

#=16(8+1)#

#=16 xx9#

#=144#