How do you solve #sin^2x-7sinx=0#?

3 Answers
Mar 6, 2018

#x=0+kpi#

Explanation:

#"take out a "color(blue)"common factor of "sinx#

#rArrsinx(sinx-7)=0#

#"equate each factor to zero and solve for x"#

#sinx=0rArrx=0+kpitok inZZ#

#sinx-7=0rArrsinx=7larrcolor(blue)"no solution"#

#"since "-1<=sinx<=1#

#"the solution is therefore "x=0+kpitok inZZ#

Mar 6, 2018

General solution:
#x = kpi#, k belongs to integers

Explanation:

#sin^2x-7sinx=0#

Factor:
#sinx(sinx-7)=0#

therefore:
1: #sinx = 0# and 2: #sinx-7=0#

2 can be simplified to #sinx=7#
therefore since #sinx=7# has no solutions, look at #sinx=0#

So when is #sinx=0#?

the general solution is:
#x = kpi#, k belongs to integers

however if they give certain parameters such as #0 < x < 2pi#,
then for this case the answer will be:

#x={0, pi}#

Mar 6, 2018

#x=0, pi or 2pi#
Or, in degrees, #x=0, 180^o or 360^o#

Explanation:

First factor the equation:
#sin^2x-7sinx=0#
#sinx(sinx-7)=0#

Then apply the Zero Product Rule, where if a product equals zero, then one or more of the factors must equal zero.

#sinx = 0 or sinx-7 = 0#

Solving, by isolating #sinx#,

#sinx=0 or sinx=7#

There are no values of #x# that will satisfy #sinx=7# since the domain of #sinx# is #-1<=x<=1#.

For #0<=x<=2pi# the values of x that satisfy #sinx=0# are #x=0, pi or 2pi#
In degree measure, for #0<=x<=360^o# the values of #x# that satisfy #sinx=0# are #x=0, 180^o or 360^o#