How can I simplify this trigonometry expression? Thanks!

enter image source here

2 Answers
Mar 11, 2018

See below

Explanation:

Whenever I see two fractions being added or subtracted with different denominators, I automatically think we need a common denominator.

1/(1+sintheta)+1/(1-sintheta)=11+sinθ+11sinθ=
(1(1-sintheta))/((1+sintheta)(1-sintheta))+(1(1+sintheta))/((1-sintheta)(1+sintheta))=1(1sinθ)(1+sinθ)(1sinθ)+1(1+sinθ)(1sinθ)(1+sinθ)=
2/(1-sin^2theta)21sin2θ
Now that we successfully added the two fractions, we will apply a Pythagorean identity to simplify:
sin^2theta+cos^2theta=1sin2θ+cos2θ=1
Therefore:
cos^2theta=1-sin^2thetacos2θ=1sin2θ
Let's substitute cos^2thetacos2θ in our denominator:
2/(cos^2theta)2cos2θ
Now apply the reciprocal identity:
Sectheta=1/costhetasecθ=1cosθ
Final answer: 2sec^2theta2sec2θ

Mar 11, 2018

2 sec^2 theta 2sec2θ

Explanation:

1/(1 + sin theta) + 1/(1 - sin theta)11+sinθ+11sinθ

multiplying each term by one in the form of a ratio of an appropriately chosen numerator and denominator:

= (1 - sin theta)/((1 + sin theta)(1 - sin theta)) + (1 + sin theta)/((1 - sin theta)(1 + sin theta))=1sinθ(1+sinθ)(1sinθ)+1+sinθ(1sinθ)(1+sinθ)

using the corollary of the difference of two squares for the terms in the denominators:

= (1 - sin theta)/(1 - sin^2theta) + (1 + sin theta)/(1 - sin^2theta)=1sinθ1sin2θ+1+sinθ1sin2θ

summing terms with the same denominator

(1 - sin theta + 1 + sin theta)/(1 - sin^2theta)1sinθ+1+sinθ1sin2θ

using a rearrangement of the identity cos^2 theta + sin^2 theta = 1cos2θ+sin2θ=1:

= 2 / cos^2theta=2cos2θ

noting sec^2 theta = 1/(cos^2 theta)sec2θ=1cos2θ:

= 2 sec^2 theta =2sec2θ