How do you differentiate #f(x)=sec(3x^3-x^2 ) # using the chain rule?
3 Answers
Explanation:
Explanation:
Because derivative of
Explanation:
#•color(white)(x)d/dx(secx)=secxtanx#
#"Differentiate using the "color(blue)"chain rule"#
#"Given "f(x)=g(h(x))" then"#
#f'(x)=g'(h(x))xxh'(x)larrcolor(blue)"chain rule"#
#f(x)=sec(3x^3-x^2)#
#rArrf'(x)=sec(3x^3-x^2)tan(3x^3-x^2)xxd/dx(3x^3-x^2)#
#color(white)(rArrf'(x))=(9x^2-2x)sec(3x^3-x^2)tan(3x^3-x^2)#