Differentiate sin(ax+b)*cos(CX+d)?
↳Redirected from
"Find the sum of the integers between 2 and 100 which are divisible by 3 ?"
#acos(ax+b)cos(cx+d)−csin(ax+b)sin(cx+d)#
#d/dx[sin(ax+b)cos(cx+d)]d/dx[sin(ax+b)cos(cx+d)]
=d/dx[sin(ax+b)]⋅cos(cx+d)+sin(ax+b)⋅d/dx[cos(cx+d)]
=d/dx[sin(ax+b)]⋅cos(cx+d)+sin(ax+b)⋅d/dx[cos(cx+d)]
=cos(ax+b)⋅d/dx[ax+b]⋅cos(cx+d)+(−sin(cx+d))⋅d/dx[cx+d]⋅sin(ax+b)
=cos(ax+b)⋅d/dx[ax+b]⋅cos(cx+d)+(−sin(cx+d))⋅d/dx[cx+d]⋅sin(ax+b)
=(a⋅d/dx[x]+d/dx[b])cos(ax+b)cos(cx+d)−(c⋅d/dx[x]+d/dx[d])sin(ax+b)sin(cx+d)
=(a⋅d/dx[x]+d/dx[b])cos(ax+b)cos(cx+d)−(c⋅d/dx[x]+d/dx[d])sin(ax+b)sin(cx+d)
=(1a+0)cos(ax+b)cos(cx+d)−(1c+0)sin(ax+b)sin(cx+d)
=(1a+0)cos(ax+b)cos(cx+d)−(1c+0)sin(ax+b)sin(cx+d)
=acos(ax+b)cos(cx+d)−csin(ax+b)sin(cx+d)#
Differential of #sin(ax+b)cos(cx+d)# is #acos(cx+d)cos(ax+b)-csin(ax+b)sin(cx+d))#
We use product formula here, which states that if #y=g(x)h(x)#, then #(dy)/(dx)=g(x)(dh(x))/(dx)+h(x)(dg(x))/(dx)#
Hence for differential of #y=sin(ax+b)cos(cx+d)#, observe that
we have #g(x)=sin(ax+b)# and #h(x)=cos(cx+d)#
therefore #(dg(x))/(dx)=acos(ax+b)# and #(dh(x))/(dx)=-csin(cx+d)#
Hence differential of #sin(ax+b)cos(cx+d)# is
#sin(ax+b)xx(-csin(cx+d))+cos(cx+d)xxacos(ax+b)#
= #acos(cx+d)cos(ax+b)-csin(ax+b)sin(cx+d))#
# 1/2[(a+c)cos{(a+c)x+(b+d)}#
#+(a-c)cos{(a-c)x+(b-d)}]#.
Recall that, #2sinucosv=sin(u+v)+sin(u-v)#.
Let, #y=sin(ax+b)cos(cx+d)#.
#:. 2y=2sin(ax+b)cos(cx+d)#,
#=sin(ax+b+cx+d)+sin(ax+b-cx-d#,
#=sin{(a+c)x+(b+d)}+sin{(a-c)x+(b-d)}#.
#:. d/dx(2y)=d/dx[sin{(a+c)x+(b+d)}#
#+sin{(a-c)x+(b-d)}]#.
#:. 2dy/dx=cos{(a+c)x+(b+d)}*d/dx{(a+c)x+(b+d)}#
#+cos{(a-c)x+(b-d)}*d/dx{(a-c)x+(b-d)}#,
#=(a+c)cos{(a+c)x+(b+d)}#
#+(a-c)cos{(a-c)x+(b-d)}#.
#rArr dy/dx=1/2[(a+c)cos{(a+c)x+(b+d)}#
#+(a-c)cos{(a-c)x+(b-d)}]#.