How do you integrate ((ln(x))^7)/x dx(ln(x))7xdx?

1 Answer
Mar 14, 2018

frac(1)(8) (ln(x))^(8) + C18(ln(x))8+C

Explanation:

We have: int frac((ln(x))^(7))(x)(ln(x))7x dxdx

= int= (ln(x))^(7) cdot frac(1)(x)(ln(x))71x dxdx

Let u = ln(x) Rightarrow du = frac(1)(x)u=ln(x)du=1x dxdx:

= int= u^(7)u7 dudu

= frac(u^(7 + 1))(7 + 1) + C=u7+17+1+C

= frac(1)(8) u^(8) + C=18u8+C

Replace uu with ln(x)ln(x):

= frac(1)(8) (ln(x))^(8) + C=18(ln(x))8+C