Given g(x)=5/(x−3)g(x)=5x3, evaluate and simplify: (g(5+h)−g(5))/h =g(5+h)g(5)h=?

2 Answers
Mar 16, 2018

- frac(5)(2h + 4)52h+4

Explanation:

We have: g(x) = frac(5)(x - 3)g(x)=5x3

In order to evaluate frac(g(5 + h) - g(5))(h)g(5+h)g(5)h, we simply substitute 5 + h5+h and 55 in place of xx in g(x)g(x):

Rightarrow frac(g(5 + h) - g(5))(h) = frac(frac(5)((5 + h) - 3) - frac(5)((5) - 3))(h)g(5+h)g(5)h=5(5+h)35(5)3h

Rightarrow frac(g(5 + h) - g(5))(h) = frac(frac(5)(h + 2) - frac(5)(2))(h)g(5+h)g(5)h=5h+252h

Rightarrow frac(g(5 + h) - g(5))(h) = frac(frac(5 cdot 2 - 5 cdot (h + 2))(2 cdot (h + 2)))(h)g(5+h)g(5)h=525(h+2)2(h+2)h

Rightarrow frac(g(5 + h) - g(5))(h) = frac(frac(10 - 5h - 10)(2 cdot (h + 2)))(h)g(5+h)g(5)h=105h102(h+2)h

Rightarrow frac(g(5 + h) - g(5))(h) = frac(- 5h)(2 cdot (h + 2)) cdot frac(1)(h)g(5+h)g(5)h=5h2(h+2)1h

therefore frac(g(5 + h) - g(5))(h) = - frac(5)(2h + 4)

Mar 16, 2018

-5/(2(h+2))

Explanation:

"evaluating each term separately"

g(5+h)=5/(5+h-3)=5/(2+h)

f(5)=5/(5-3)=5/2

rArr(g(5+h)-g(5))

=5/(2+h)-5/2

=(10-5(2+h))/(2(2+h))=(-5h)/(2(2+h))

rArr(g(5+h)-g(5))/h

=(-5cancel(h))/(cancel(h)2(2+h))=-5/(2(2+h))