We have: g(x) = frac(5)(x - 3)g(x)=5x−3
In order to evaluate frac(g(5 + h) - g(5))(h)g(5+h)−g(5)h, we simply substitute 5 + h5+h and 55 in place of xx in g(x)g(x):
Rightarrow frac(g(5 + h) - g(5))(h) = frac(frac(5)((5 + h) - 3) - frac(5)((5) - 3))(h)⇒g(5+h)−g(5)h=5(5+h)−3−5(5)−3h
Rightarrow frac(g(5 + h) - g(5))(h) = frac(frac(5)(h + 2) - frac(5)(2))(h)⇒g(5+h)−g(5)h=5h+2−52h
Rightarrow frac(g(5 + h) - g(5))(h) = frac(frac(5 cdot 2 - 5 cdot (h + 2))(2 cdot (h + 2)))(h)⇒g(5+h)−g(5)h=5⋅2−5⋅(h+2)2⋅(h+2)h
Rightarrow frac(g(5 + h) - g(5))(h) = frac(frac(10 - 5h - 10)(2 cdot (h + 2)))(h)⇒g(5+h)−g(5)h=10−5h−102⋅(h+2)h
Rightarrow frac(g(5 + h) - g(5))(h) = frac(- 5h)(2 cdot (h + 2)) cdot frac(1)(h)⇒g(5+h)−g(5)h=−5h2⋅(h+2)⋅1h
therefore frac(g(5 + h) - g(5))(h) = - frac(5)(2h + 4)