How do you find slope of the line that contains (1,6) and (10, -9)?

2 Answers

Slope = -5/3=53

Explanation:

Recall the slope formula.

The given points are (1,6) and (10, -9)

comparing with (x_1, y_1) and (x_2,y_2)(x1,y1)and(x2,y2)
x_1=1x1=1color(white)(ddddddddddddddddddddddddddddx_2=10x2=10
y_1=6y1=6color(white)(ddddddddddddddddddddddddddddy_2=-9y2=9

m = (y_2 - y_1) / (x_2 - x_1)m=y2y1x2x1

m = (-9 - 6) / (10 - 1)m=96101

m = (-15) / (9)m=159

Slope= -15/9 = -5/3159=53

Mar 18, 2018

m=-5/3m=53

Explanation:

"Slope "(m) = (y_2-y_1)/(x_2-x_1)Slope (m)=y2y1x2x1

Here , x_1=1x1=1

y_1=6y1=6

x_2=10x2=10

y_2=-9y2=9

=> m = (-9-6)/(10-1)m=96101

=> m = -15/9m=159

=> m = -5/3m=53